

Carbon 101

Carbon and Forest Management Work Group

July 10, 2024

Evergreen Economics www.evergreenecon.com

CARBON 101 TERMINOLOGY

Two Key Terms 1. Carbon Stocks - the

amount of carbon in a pool (or account). The pictures in the figure to the right

2. Carbon Flux - or

difference in carbon stocks over a specified time period (*or stock change*). The arrows in the figure to the right

Two Key Concepts

- 1. **Reliability** the emissions reduction (Or sequestration) must be additional and that includes onsite and offsite effects (so leakage)
- 2. Durability they also need to stick around (Or we need to account for the project timeframe) through reserve pools or discounting

CARBON 101 TERMINOLOGY

Two Key Terms 1. Carbon Stocks - the

amount of carbon in a pool (*or account*). The pictures in the figure to the right

2. Carbon Flux - or

difference in carbon stocks over a specified time period (*or stock change*). The arrows in the figure to the right

When talking Fluxes or stock changes (typically defined over a period of time)

- 1. Emissions going from terrestrial pools to the atmospheric pool
- 2. Sequestration going from the atmospheric pool into a terrestrial pool

CARBON 101 TERMINOLOGY

Two Key Terms

- **1. Carbon Stocks** the amount of carbon in a pool (*or account*). The pictures in the figure to the right
- 2. Carbon Flux or difference in carbon stocks over a specified time period (*or stock change*). The arrows in the figure to the right

Stocks do not matter, only flux (particularly stock change between terrestrial pools and atmosphere)

When talking Fluxes or stock changes (typically defined over a period of time)

- 1. Emissions going from terrestrial pools to the atmospheric pool
- 2. Sequestration going from the atmospheric pool into a terrestrial pool

CARBON IN WESTERN WASHINGTON

The focus was more of what is on forest land in WWA

Figure 17: Projected Forest Carbon Stored on State Lands in Western Washington

These are stocks They represent the tree lists from the FIA run through FVS

CARBON IN WESTERN WASHINGTON

The focus was more of what is on forest land in WWA

CARBON IN WESTERN WASHINGTON

The focus was more of what is on forest land in WWA

658.5 MtC total aboveground live tree carbon

These are stocks

They represent the tree lists from the FIA run through FVS Let's focus on aboveground live tree carbon

State	Carbon Pools	2018	2019	2020	2021	2022	Compare
Washington	Total Forest Ecosystem	2,590	2,594	2,599	2,603	2,608	with this
Washington	Aboveground Biomass	901	904	907	910	912	with this
Washington	Belowground Biomass	188	189	189	190	190	(for all WA
Washington	Dead Wood	262	264	265	267	268	
Washington	Litter	154	154	154	154	154	
Washington	Soil (Mineral)	1,083	1,083	1,083	1,082	1,082	
Washington	Soil (Organic)	1	1	1	1	1	

Domke, Grant M.; Walters, Brian F.; Giebink, Courtney L.; Greenfield, Eric J.; Smith, James E.; Nichols, Michael C.; Knott, Jon A.; Ogle, Stephen M.; Coulston, John W.; Steller, John. 2023. Greenhouse gas emissions and removals from forest land, woodlands, urban trees, and harvested wood products in the United States, 1990-2021. Resource Bulletin. WO-101. Washington, DC: U.S. Department of Agriculture, Forest Service, Washington Office. 10 p. <u>https://doi.org/10.2737/WO-RB-101</u>

The typical approach

- 1. Start with harvest level in carbon
 - This would be the merchantable component of the trees harvested

The typical approach

- 1. Start with harvest level in carbon
- 2. Apply mill efficiency rate (how much of the harvested carbon makes its way into the product)

Pagion	States	Hard	wood	Softwood		
Region	States	Saw Log	Pulpwood	Saw Log	Pulpwood	
Pacific Coast:	Washington	0.531	0.531	0.740	0.500	
Pacific Northwest, West (PWW)	Oregon					

The typical approach

- 1. Start with harvest level in carbon
- 2. Apply mill efficiency rate (how much of the harvested carbon makes its way into the product)
- 3. Apportion to a set proportion of wood products

Wood Products Generated									
Supersections	Softwood Lumber	Hardwood Lumber	Plywood	Oriented Strand Board	Non- structural Panels	Miscellaneous	Paper		
Oregon and Washington Coast	73%	5%	12%	0%	1%	2%	8%		

The typical approach

- 1. Start with harvest level in carbon
- 2. Apply mill efficiency rate (how much of the harvested carbon makes its way into the product)
- 3. Apportion to a set proportion of wood products
- 4. Apply half life to account for when those products come out of use
- 5. And account for the out of use part that remains stored in landfills

	_	Pacific Northwest; Westside								
	Softwood						Hardwood			
	Saw		log	Pulpwood		A	All			
Year after production		In use	Landfill	In use	Landfill	In use	Landfill			
	0	0.740	0.000	0.500	0.000	0.531	0.000			
	10	0.489	0.125	0.075	0.122	0.231	0.122			
	25	0.340	0.195	0.001	0.110	0.122	0.157			
	50	0.228	0.240	0.000	0.085	0.069	0.167			
	75	0.168	0.263	0.000	0.078	0.044	0.173			
	100	0.130	0.279	0.000	0.076	0.030	0.177			

Table 1.6.¹ - Average disposition patterns of carbon as fractions in roundwood by region and roundwood category; factors

¹ from the Forestry Appendix of the Technical Guidelines of the U.S. Department of Energy's Voluntary Reporting of Greenhouse

Other items to consider:

Afforestation and Avoided Emissions

- We did not consider forest management at the extensive margin (adding trees on land that was not forest before)
- Nor do we consider avoided emissions (payments for stocks as opposed to flux) as it is fraught with issues like additionality and leakage and the voluntary market has shied away from it in favor of removals (payments for flux)

>The final issue relates to substitution

- \succ This can be done through post processing if need be.
- For wood used in single family housing it has been argued that assuming concrete and steel substitution may not be warranted