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Abstract: A fundamental question of forestry is that of species composition: which species are present,
and which are not. However, traditional forest measurements needed to map species over large areas
can be both time consuming and costly. In this study, we combined airborne light detection and
ranging (LiDAR) data with extensive field data from the Long-Term Ecosystem Productivity study
located near Sappho, Washington, USA to increase the accuracy of our GIS data and to differentiate
between red alder (Alnus rubra Bong.) and other dominant tree species. We adjusted plot and
tree locations using LiDAR canopy height models (CHMs) by manually matching tree canopies
on the CHMs with tree stem maps based on field data. We then used the adjusted tree locations
and metrics computed from LiDAR point cloud data to create a classification model to identify
and map red alder. The manual matching of field stem maps to CHMs improved tree locations,
allowing us to create model training data. These data were used to create a random forest model that
discriminated between red alder and conifer species with an accuracy of 96%. Our findings highlight
the potential of LiDAR to improve coordinates of individual trees as well as discriminate between
selected coniferous and deciduous tree species using LiDAR data collected in leaf-off conditions in
Pacific Northwest ecosystems.

Keywords: forestry; remote sensing; classification; GIS

1. Introduction

Airborne laser scanning systems consist of a laser scanner, a global navigation satellite
system (GNSS) receiver, and an inertial measurement system (IMU) mounted in a fixed-
or rotary-wing aircraft. The laser scanner emits pulses of laser light and detects the light
reflected from target objects to measure the range to the objects. These range measurements
are combined with the aircraft position (measured by the GNSS receiver) and orientation
(measured by the IMU) to produce spatially referenced, three-dimensional data (hereafter
referred to as light detection and ranging (LiDAR)) that provide measurements of every-
thing not covered by water that can be seen by an observer from an aerial point-of-view.
LiDAR data can be discrete points, called returns or echos, or a continuous record of
the amount of detected light, called a waveform, for each pulse of laser light. Scanners
commonly in use emit hundreds of thousands of pulses each second, with some systems
capable of emitting more than a million, and typically produce data densities exceeding
four pulses per square meter. Discrete return systems record four or more returns for each
pulse with an intensity value (relative measure of the reflected signal strength associated
with each return) for each and waveform systems record hundreds or thousands of intensity
measurements for each pulse. In the United States, collection of LiDAR data began in the
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late 1990s with organized, regional groups bringing various stakeholders together to fund
data collection efforts. While the focus of these early programs was on the production of
accurate, highly detailed ground surface topography, the forestry community was quick to
realize the potential applications of LiDAR to characterize and map vegetation conditions
over large areas. Early efforts focused on a basic understanding of the data and its uses
to extract information useful in a forestry context [1]. Within 10 years, a broad range of
applications had been developed and resource managers recognized the tremendous utility
of LiDAR-derived information to make improved decisions [2]. Among the various applica-
tions of LiDAR, perhaps the most aggressively pursued has been the use of LiDAR-derived
information to augment or replace traditional forest inventory.

Forest inventory relies on the systematic collection of data and forest information
to assess and analyze forest and landscape conditions. Inventory traditionally uses tree
measurements collected at spatially distributed sample locations to produce estimates
of attributes such as species distribution, volume, basal area, stem density, and biomass.
Given the cost of collecting field measurements, sampling densities tend to be sparse,
data collection may not occur at regular intervals, and the resulting attribute estimates
can not necessarily be extrapolated to larger areas. LiDAR offers the potential to provide
spatially explicit, detailed information over large areas that can be used in conjunction with
traditional inventory methods. Early work by Næsset [3] set the stage for an explosion of
inventory-related applications and the development of standardized techniques [4,5] that
have been applied around the world.

However, one component of forest inventory has remained somewhat elusive: tree
species. In their review of tree species classification using LiDAR data, Michalowska and
Rapinski [6] found that most studies involved six or fewer species. For the studies included
in their review, they dismantled comparative studies into sub-studies and treated them
as individual cases. Of the sub-studies they evaluated, they reported 21, 39, 18, 5, and
10 sub-studies that produced classification methodologies to classify two, three, four, five,
and six species, respectively. Additional studies classified 7, 9, and 15 species (one case
for each). Overall accuracies when classifying two to six species ranged from 97% to
57% with accuracy decreasing as the number of species classified increased. In general,
their review concluded that waveform LiDAR produced the most accurate classifiers
compared to the metrics computed using intensity and/or height information from discrete
return LiDAR. They also concluded that the random forest and support vector machine
algorithms produced the highest overall species classification accuracies compared to
other classifiers used in the studies they examined (K nearest neighbor, linear discriminant
analysis, logistic regression, maximum-likelihood classifier, and deep learning methods).
Additional work reported by Ørka et al. [7] and Liang et al. [8] focused on classifying
deciduous and coniferous types using height and intensity metrics derived from discrete
return LiDAR. Ørka et al. [7] reported 88% accuracy for stem-mapped large trees using a
combination of intensity and height metrics computed using discrete return LiDAR. Liang
et al. [8] reported 89.83% accuracy using a single metric: the difference between first and
last return surfaces for trees identified using a segmentation algorithm applied to a canopy
height model. Prieur et al. [9] compared species identification using height and intensity
metrics derived from three types of LiDAR data (monospectral and multispectral linear
systems and a single photon system) collected in leaf-on conditions and random forest and
found that the same method could be applied across all three LiDAR systems to produce
similar accuracies. They report accuracies ranging from 83–90%, 46–54%, and 68–79% for
hardwood/softwood, 12 species and 4 genera, respectively.

In this study, we target one species in particular: red alder (Alnus rubra Bong). By
a wide margin, red alder is the most predominant nitrogen-fixing tree species in the
coastal forests of N. California to Washington where large wildfire-induced losses of
N (nitrogen) are not infrequent [10], and where N is the nutrient most limiting forest
productivity [11]. Red alder is thought to improve forest soil productivity not only by
fixing N2 at nearly unparalleled rates of over 300 kg ha−1 yr−1 [12], but also by increasing
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mineral soil organic matter and improving soil structure. Mineral soil organic matter
determines water-holding and cation-exchange capacities, factors known to be related
to forest productivity. Red alder’s capabilities help explain its rapid growth on many
sites where it can easily outstrip and overtop competing conifers. Although red alder
usually has higher stumpage value and achieves sawlog dimensions faster than Douglas
fir (Pseudotsuga menziesii Mirb Franco), foresters have not planted it widely in the Pacific
Northwest—in part because of uncertainties in how to properly manage it and lower stand
volumes per hectare at rotation age. Properly mixing red alder with conifers has many
potential advantages on N-limited sites. For example, on intensively burned soils, planting
red alder in-between Douglas fir planted four years earlier proved extremely beneficial by
more than doubling stand tree volume [13]. The deciduous red alder appears to benefit
understory plant growth and diversity as well when grown with conifers [14–16]. Stands
with higher proportions of red alder have been correlated with more herbaceous biomass
that provide important forage for wildlife, such as ungulates [15]. Although formerly
red alder was exclusively thought of as a weedy species that should be removed due to
competition with crop trees, studies have showcased the important role red alder has in an
ecosystem, from allowing additional light to reach the forest floor during leaf-off months to
improving soil health and productivity. This makes it of particular interest when studying
overall ecosystem productivity.

The study site we used is part of the long-term ecosystem productivity (LTEP) network.
The LTEP network includes four different sites in Washington and Oregon ranging in size
from 120–250 ha [17]. Large-scale forest inventories must balance the cost of data collection
with the required precision of the estimates for forest attributes to meet the needs of land
managers. Research studies, on the other hand, typically collect intensive field data covering
relatively small areas to address very specific questions. In addition, long-term research
studies typically begin with well-defined field sampling and measurement protocols. Over
time, however, some of the original research questions change or new questions arise, and
often the original field protocols are not well suited to address the new questions. The
original goal of LTEP was to evaluate management practices that most impact the long-term
ecosystem productivity of forests in the Pacific Northwest region of the United States [17].
To accomplish this, researchers planned to manipulate forest structure to mimic different
stages of forest development by varying the level of harvest, tree species replanted, and
the amount of downed wood left behind after harvest. Initial work to establish the LTEP
sites was done in the early 1990s and the site was harvested and replanted to the desired
starting condition in 1995. The work to establish the site included installation and survey
of the locations for a set of permanent sample plots. However, turnover in personnel, poor
records regarding the original survey, lack of digitization of old records, revisions to plot
locations, advances in our GPS capabilities since study implementation, and observed
location errors during recent field visits have led the researchers involved to doubt the
accuracy of the plot locations. Since all the stem-mapped data collected in recent field
campaigns are referenced to the plot corners, this also affects confidence in tree locations.
Given the accuracy of LiDAR data (horizontal accuracy of the return positions typically
better than 50 cm and vertical accuracy better than 25 cm), we wanted to maximize the
utility of field data collected previously and ensure that future data are accurately located.

Our study was motivated by two over-arching desires. First, we wanted to improve
the position data for plots and individual trees and, second, we wanted to map red alder
over our study area to assist with another project investigating the effect of red alder on the
abundance and growth of understory plants. Our specific objectives were to:

• Test the utility of LiDAR-derived data products for improving the locations of plots
and stem-mapped trees.

• Develop a classification model that could distinguish red alder from conifer species
and use this model to map red alder over the entire study area.
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2. Materials and Methods
2.1. Study Site

The LTEP site used in this analysis (Figure 1) is located outside of Sappho, WA, in
the northwest area of the Olympic Peninsula. The Sappho LTEP site encompasses about
416 ha and lies at about 100 m elevation on a glacial outwash plain near the Sol Duc
River on the northwestern part of the Olympic Peninsula in Washington state. The site is
characterized by abundant year-round rainfall (>300 cm per year), a relatively mild climate,
and highly fertile soils. At this site, researchers manipulated forest structure to mimic
different stages of forest development and succession by varying the level of harvesting,
tree species replanted, and the amount of downed wood left behind after harvest. Two
hundred tree plots, each 18 by 18 m, have been installed and measured on the Sappho site.
These include 60 plots in early seral conditions created by clearcutting in 1995 and then
replanting equal proportions of red alder and Douglas fir seedlings to mimic an early seral
forest. We focused on these early seral plots in this study, as they typically have the largest
amount of red alder.
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Figure 1. Map of Sappho Long-term Ecosystem Productivity site (A) with the locations of experi-
mental units indicated by rectangles. Only the early seral units (blue) were included in this analysis.
Location of Sappho site in larger context of the state of Washington, USA, with Sappho site indicated
with a red star (B). Overview of the Sappho site with Sappho site indicated by a red rectangle (C).

Since the initial treatment in 1995, additional tree species have naturally regenerated
in the early seral plots. Species include western hemlock (Tsuga heterophylla (Raf.) Sarg.),
Sitka spruce (Picea sitchensis (Bong.) Carrière), cascara (Rhamnus purshiana (DC.) A. Gray),
and vine maple (Acer circinatum Pursh). In these plots, the most common large trees (DBH
10 cm or larger) are Douglas fir, western hemlock, and red alder.

2.2. Ground Reference Data

Field data for this study were collected by a group of field technicians during the
summer of 2020. Measurements were taken on 59 of the 60 early seral tree plots in the study
site. One early seral plot could not be relocated. Measurements recorded for individual
trees in the tree plots included species, diameter at breast height (DBH; cm) measured at
a height of 1.37 m (4.5 feet), distance and azimuth from each tree to a central reference
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tree, and any other relevant comments regarding the condition of the tree. For example,
comments were recorded if the tree was: dead, leaning more than a 45◦, part of a cluster of
stems sharing the same base, or growing on top of a stump.

The reference tree for each plot was picked based on the size and location of the tree
within the tree plot. It needed to be large enough to be visible from all other trees on the
tree plot and, ideally, located near the center of the plot. GNSS location data were collected
for the reference trees using survey-grade receivers (Javad Triumph 2) and post-processed
using a nearby base station. While these receivers are capable of millimeter accuracy under
ideal conditions (open sky with no nearby reflecting surfaces), we typically see position
errors of 1–2 m under dense canopy and occasionally see errors exceeding 5 m [18]. The
GNSS locations provided an initial location for the stem maps. Distance was measured
using a standard closed reel aluminum measuring tape from the middle of the reference
tree to the middle of each other individual tree located within the plot. Azimuth was
measured using a standard field compass, with the field technician standing at the tree
in question and measuring the azimuth to the reference tree. The distance and azimuth
were used to create stem maps for each tree plot with the reference tree as the origin. These
stem maps were converted into individual shapefiles for each tree plot. Individual points
within the shapefile represented the base of individual trees in the plots and the fields in
the associated database contained the tree attributes measured in 2020.

2.3. Plot Survey Data

Survey work related to the establishment of the Sappho LTEP site was originally
completed from 1992 to 1993 by a team of professional surveyors. The survey located the
plot corners but not the individual trees. Since the original survey, the coordinates for tree
plots have been revised over time using a variety of different methods. However, due to
the passage of time, turnover in personnel, and poor records, there is limited information
regarding the original survey methods and data, and/or the methods used to revise the
data. We know from recent visits by field technicians that the survey data for tree plot
locations are not entirely accurate.

2.4. LiDAR Data

All LiDAR point cloud data used in this study were downloaded from the Washington
State Department of Natural Resources (WADNR) LiDAR Portal. These data were acquired
by the Puget Sound LiDAR Consortium (PSLC) for the WADNR from QSI Environmen-
tal [19]. Data were acquired from 31 December 2014 to 6 March 2015. Products were
delivered to the WADNR in the Washington State Plane South projection with a horizontal
datum of NAD83 and vertical datum of NAVD88 and units of US survey feet. Point data
were processed and classified to identify ground points by QSI Environmental. Two LiDAR
sensors were used: a Leica ALS70 and a Leica ALS80. Sensors were flown at a survey
altitude of 1400 m with a 30◦ field of view. The target pulse rate was 198 kHz and 195 kHz
for the ALS70 and ALS 80 and intensity was recorded as 8-bit values. The LiDAR flights
were flown with a side-lap of greater than or equal to 60%, meaning that there was an
overall overlap greater than or equal to 100%. The average aggregate pulse density (first
return density) was 17.26 pulses/m2 and the average density for ground classified returns
was 1.31 points/m2. Absolute accuracy, reported as Fundamental Vertical Accuracy (FVA),
for the data was 16.2 cm (1.96 * RMSE) using 96 ground control points not used in the
calibration process. No horizontal accuracy assessment was reported for the data.

2.5. Combining Ground Reference Data, Field Survey Data, and LiDAR Data

We processed the LiDAR point clouds and created canopy height models (CHMs) for
each tree plot in R Studio (version 4.0.4) using the lidR package (version 3.0.4) [20]. We
first normalized the point clouds using the normalize_height function. Finally, we created
the CHMs using the grid_canopy function with an output resolution of 0.1524 m and the
dsmtin algorithm, which is based on a Delaunay Triangulation.
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Next, we imported the processed CHMs into ArcGIS Pro (version 2.7.2), along with
the stem maps and plot survey data, with the goal of matching the stem maps to individual
trees visible on the canopy height models. First, we projected the stem maps and plot
survey data into the coordinate system of the LiDAR data and CHMs, described previously.

For each of the tree plots, we completed the following steps. First, we moved the
entire stem map without changing the location of the tree points in relation to one another,
to the general area of the intended tree plot based on the original survey data and GNSS
location. Next, we filtered the stem map by DBH, temporarily removing trees 20 cm DBH
and smaller. We did this because trees with a DBH of 20 cm and larger are easiest to identify
on the CHMs. Figure 2 shows an example tree plot with and without the filtering based
on tree DBH. Then, we changed the symbology of the stem map points to reflect the DBH
of each tree. Next, we manually adjusted the entire stem map to better align with peaks
in the CHMs, matching the larger DBH sizes with the taller trees on the CHM, as well as
aligning the overall pattern of the trees in the stem map to the CHM. Then, we filtered the
stem map points again, adding back in the trees of DBH 20 cm and smaller. We did not
attempt to adjust the locations of individual trees relative to one another. We know from
field observations that most trees have some amount of lean resulting in an offset between
the tree base and treetop. In addition, red alder tends to shift its crown towards canopy
openings, resulting in large offsets between the positions measured on the ground and the
crowns and highpoints observed in the CHM. The final step in the adjustment process was
to assign an anomaly number to each tree point in the stem map.
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Figure 2. Matching of stem maps and light detection and ranging (LiDAR) canopy height models
(CHMs) for an example tree plot. Individual trees are represented as different symbols based on their
diameter at breast height (DBH; cm) and labeled based on their USDA species code (ALRU is red
alder (Alnus rubra Bong.), PSME is Douglas fir (Pseudotsuga menziesii Mirb Franco), TSHE is western
hemlock (Tsuga heterophylla (Raf.) Sarg.), and RHPU is cascara (Rhamnus purshiana (DC.) A. Gray)).
The tree plot corners and borders are also shown. (a) Depicts the plot with only the larger trees, DBH
20 cm and higher, matched to the CHM; (b) depicts the same plot as (a) but with all trees.

We assigned each tree an anomaly number to help determine its suitability for use in
the overall classification model; essentially, to identify mislocated or unusually growing
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trees so they could be removed from the dataset used to create the classification model.
We assigned anomaly classification codes indicating the following conditions: no problem,
dead tree, leaning tree, tree shares base with other tree/forked tree, tree is on stump, tree is
less than 0.5 m away from another tree, and check tree in field (the location of the tree did
not make sense, even though the locations of the surrounding trees did). We used notes
taken in the field and observations of the alignment between the tree points and CHM to
assign the anomaly number to each tree.

In general, we disregarded trees 10 cm DBH and under throughout this process, and
we did not use them in the final classification model. We made this decision because the
LiDAR data that we used were collected in 2015, but the stem maps were based on the 2020
field data. Thus, the young trees that were recorded in 2020 either did not exist in 2015 or
were too small/short to be clearly visible on the 2015 LiDAR CHMs. In general, we focused
on trees that were clearly visible in the CHM, hoping to maximize the quality of the data
available for use in the classification model. We were confident that we had adequate data
for model development and did not feel that downsizing the training dataset by removing
young trees would impact the overall accuracy of the classification model [21].

2.6. Red Alder Classification Model

Our first step in creating the red alder classification model was determining the sample
area for each tree. We opted for a simple approach and created an equation for the sample
radius for each tree based on the tree height, with taller trees receiving larger circles. The
equation was based on the average radius for red alder—typically the tree with the largest
canopy size—and the average radius for western hemlock—typically the tree with the
smallest canopy size, taken from a representative tree plot. We used the average radii
divided by two, as opposed to the full radii, because we wanted to ensure that most of the
LiDAR returns within each circle corresponded to the correct tree and, thus, species. We fit
an equation between these two half radii averages (one for red alder and one for western
hemlock) and the average tree heights for both those species. The final equation that we
used was

r = 0.0853t − 2.01, (1)

where r is the radius of the circle use to sample from the LiDAR point cloud and t is the
height of the tree in question. All units are in meters. Figure 3 shows the same tree plots as
shown in Figure 2 with the addition of the circular tree crown representations.

Figure 4 shows a flowchart of the process used to isolate LiDAR points for individual
crowns to produce our training data. This process begins by applying the radius equation
(Equation (1)) using the average height of the tallest species (Douglas fir) to produce the
radius for a preliminary circular sample area around each tree. Next, we clipped the point
data for the circles using the ClipData tool in FUSION (version 4.21) [22] and then used the
CloudMetrics tool to compute the 99th percentile of normalized height (P99) to use as the
actual height for each tree. This actual height was then used in Equation (1) to produce a
final radius for each tree. We selected P99 to eliminate the effect of unclassified or incorrectly
classified outliers and returns from branches of adjacent trees. While the difference between
the maximum and P99 heights was small (mean: 0.8 m, standard deviation: 1.7 m), we did
find a maximum difference of 23.5 m and 55 trees where the difference was larger than 5 m.
The circle radius was constrained to be at least 0.61 m (2 feet) to provide adequate LiDAR
points within the sample area. We clipped a second set of points using the final circle and
computed the full suite of FUSION metrics using first, last, and all returns. All intensity
values used in this study were the uncalibrated, unadjusted values recorded by the LiDAR
sensor and delivered by the vendor.
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Using the FUSION metrics, we computed relative height and intensity percentiles for
first and all returns by dividing percentile values by the 95th percentile value. Using the
metrics for first and last returns, we computed several “canopy penetration” metrics as
follows:

• 5th percentile height of last returns/95th percentile height of first returns;
• 10th percentile height of last returns/90th percentile height of first returns;
• Mean height of last returns/mean height of first returns;
• 95th percentile height of first returns—5th percentile height of last returns;
• 90th percentile height of first returns—10th percentile height of last returns;
• Mean height of first returns—mean height of last returns (hereafter called canopy

penetration).

Finally, we computed two ratios using the relative height percentiles for all returns:
the relative 25th percentile divided by the relative 75th percentile and the relative 10th
percentile divided by the relative 90th percentile. After removing metrics not related
to vegetation structure (counts of first and all returns within the circular sample), abso-
lute maximum and minimum heights (to avoid problems with unclassified or incorrectly
classified outliers), and the last-return metrics except those used to compute the canopy
penetration metrics, we were left with 203 metrics for each circular sample. Knowing
that individual tree crowns overlap, we wanted to identify circular clips for trees without
overlap and clips for trees overlapped by the same species. We hoped that the clips without
overlap would prove useful when developing the classification model. This analysis was
done using the st_overlaps function in the sf package [23] and additional variables were
created for each tree indicting whether tree circles overlapped and if the overlapping circles
were the same species.

The process depicted in Figure 4 produced data for 1599 trees. We filtered the trees to
remove 92 trees with anomalies identified in the field (dead trees, trees with excessive lean,
and trees identified as having poor locations), 517 trees with DBH less than 10 cm, and 3
trees with insufficient points to compute metrics. In addition, we removed Sitka spruce
(8 trees) and cascara (1 tree). There were no vine maple trees with DBH 10 cm or larger
without anomalies. Finally, the remaining conifer species (western hemlock and Douglas
fir) were grouped together and labeled “conifer”. The remaining 978 trees (150 red alder
and 828 conifer) were used to develop classification models (hereafter called overlapped).
Of these trees, 536 (66 red alder and 470 conifer) were not overlapped by other trees, 644
(73 red alder and 571 conifer) were either not overlapped by other trees or were overlapped
by trees of the same species (hereafter called non-overlapped trees). We used the latter set
of 644 trees to develop an alternate set of classification models.

Both sets of tree data, overlapped and non-overlapped, were split into training (70%)
and testing (30%) subsets. Preliminary models were developed using all 203 predictors
with the randomForest function in the randomForest package [24]. We had many times
more conifer species than red alder, so we balanced the sample sizes using the sampsize
argument of the randomForest function with value set to the number of red alder trees
in the training data sample. We also created models based on simple threshold values to
better understand how individual variables performed for classification. Threshold values
were computed for each variable as the mean of the median values for each type.

After developing the preliminary random forest models, we used variable importance
scores produced by random forest to help select a subset of predictors and then developed
additional models using the subset. We evaluated all models using the testing data (30%)
and all data and selected a final model based on the overall classification accuracy using all
data. For random forest models, the same set of variables was used to fit models 30 times
using different random number seeds for the data split and model fit. The overall accuracy
was averaged for the 30 resulting models.

The final model was applied to map the presence of red alder by first computing
metrics for the entire study area using a 1.524- by 1.524-m (5 by 5-foot) grid and the first,
last, and all returns within each grid cell using FUSION’s AreaProcessor workflow tool.
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The final model was applied using a selected subset of variables and the AsciiGridPredict
function in the yaImpute package [25].

A “forest mask” (using the same 1.524- by 1.524-m cells) was developed to identify
forested areas. Cells were considered forest and assigned a value of 1 if they contained at
least 10% cover (ratio of first returns above 1.37 m (4.5 feet) to total first returns) and had
a 99th percentile height (all returns) value greater than or equal to 3.05 m (10 feet). Cells
not meeting these criteria were assigned a value of 0. This mask was applied to the final
prediction layer to eliminate non-forest areas.

3. Results
3.1. Combining Ground Reference Data, Field Survey Data, and LiDAR Data

The matching of the stem maps to LiDAR CHMs, using the framework survey data for
guidance, produced obvious improvements to the tree positions (Figure 5). From the initial
59 early seral tree plots we removed nine tree plots because they did not contain red alder.
We also removed four tree plots with stem maps that did not clearly match the LiDAR
CHMs. This left us with 46 tree plots for use in the classification model. Our results, new
locations for individual trees, were better aligned with the CHM, leading us to conclude
that our methodology was successful. The overall average shift in locations was 0.27 m for
the east/west direction and 0.43 m for the north/south direction. The RSME was 1.9 m and
2.7 m, respectively.
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average differences between original tree plot locations and LiDAR-based locations.
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3.2. Red Alder Classification Model

Evaluation of the variable importance scores obtained using all 203 LiDAR height
and intensity metrics led us to select four metrics for use in our final model: intensity
interquartile distance for all returns (Int.IQ), 60th percentile intensity value for first returns
(First.Int.P60), canopy penetration, and 30th percentile of intensity values for all returns
(Int.P30). Box plots for the four metrics (Figure 6) show that values for each of the metrics
are well separated for the species classes. We tested the difference between the median
values for red alder and conifer groups using Mood’s median test (median_test function in
the coin package [26]) and found that differences for the four metrics were all significant at
the 0.01 level. The values used for the threshold models for the four metrics are shown as
horizontal dashed lines in Figure 6. Random forest and threshold model performance is
summarized in Table 1. Prediction accuracy was highest (95.68% evaluated using all trees)
for the random forest model that used four variables and was trained using tree data that
included overlapped trees. For the random forest models with all metrics and those with
only four metrics, we explored the mtry and ntree parameters used with random forest.
We found that overall accuracy varied by less than one percent when mtry was varied from
1 to 16 (one to four for the model with only four predictors) with steps of one variable and
ntree was varied from 1000 to 5000 with steps of 1000 trees. For the final model with four
predictors, we used values for mtry and ntree of 2 and 1000, respectively. For the models
with all predictors, we used values for mtry and ntree of 14 and 1000, respectively.

Table 1. Comparison of model performance for random forest and simple threshold models. Random
forest models were fit 30 times with different data splits for training and testing data and different
random number seeds for each model run. Accuracy was averaged for the 30 models. The Kappa
coefficient represents the average for the 30 models when applied to all trees.

Accuracy (%) *

Model Type
Used

Overlapped
Trees **

Training Data
Non-

Overlapped
Trees

All Trees Kappa

RF: Variable subset Yes 93.89 97.43 95.68 0.85

RF: All variables Yes 93.52 96.92 95.59 0.84

RF: Variable subset No 95.35 96.87 94.31 0.80

RF: All variables No 94.83 96.34 93.94 0.79

Threshold: Int.IQ Yes – 94.25 92.94 –

Threshold: First.Int.P60 Yes – 93.17 92.33 –

Threshold: Canopy
Penetration Yes – 91.93 88.04 –

Threshold: Int.P30 Yes – 92.55 89.98 –

Threshold: Int.IQ No – 93.79 92.64 –

Threshold: First.Int.P60 No – 93.17 92.33 –

Threshold: Canopy
Penetration No – 88.04 83.23 –

Threshold: Int.P30 No – 92.24 89.78 –

* Accuracy for training data is the reported overall accuracy for the random forest model developed using the
training data. ** Model was developed using trees with crowns overlapped by the same or different species.
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Figure 6. Box plots for the four variables used in the final random forest classification model. Dashed
horizontal lines are the threshold values used for the simple threshold models.

We applied the classification model using LiDAR metrics computed for a 1.524 m by
1.524 m raster over an area of about 3025 ha. Figure 7 shows one of the tree plots overlaid on
the classification results. In general, the classification results match the areas represented by
the circular crown images for red alder shown in Figure 7. In areas dominated by red alder,
the classification results present contiguous patches of red alder. However, in areas with a
mix of red alder and conifer species, results are somewhat broken but still correspond well
to the known locations of red alder. Figure 8 shows the classification results overlaid on the
entire Sappho LTEP study area. For treatment units known to contain high proportions
of red alder, the results also indicate high proportions of red alder. In addition, riparian
areas (upper left corner in Figure 8) contain stands dominated by red alder with a few tall
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conifers (mostly Douglas fir). Classification results correctly map the red alder and conifers
in these areas.
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Figure 7. Red alder classification raster with example tree plot laid over top. The dark blue pixels on
the raster were identified by the classification model as red alder, and the white pixels were identified
as not red alder. Dark green pixels were identified as non-forest. Circles are colored based on the
corresponding species of the tree points. Red alder (ALRU) is blue, Douglas fir (PSME) is transparent
light green, and western hemlock (TSHE) is transparent pink.
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Figure 8. Red alder classification raster overlaid on the entire Sappho LTEP study. Blue pixels
represent red alder, white pixels represent not red alder, and all other pixels were identified as
non-forest. The black boxes depict the approximate locations of tree plots based on the framework
survey data.

4. Discussion

In this study, we wanted to improve the position data for plots and individual trees,
and we wanted to map red alder over our study area to assist with another project investi-
gating the effect of red alder on the abundance and growth of understory plants. Overall,
we accomplished both goals.

We found that LiDAR canopy height models (CHMs) can be used to match individual
second-growth trees with ground reference data, and we outline the methodology we
used. Because we had high-quality ground reference data, and because we removed any
trees with potential outliers, we can say with a relatively high degree of certainty that the
LiDAR point returns used in the classification model belong to the species identified in the
field. We did this by manually matching the stem maps to CHMs. We found the manual,
human-based alignment process was ideally suited to our situation and speculate that it
may be appropriate for other field experiments that only take field measurements on small
parts of their study area. Similar types of experiments can use their field data as reference
data to make a LiDAR-based model that can be applied to the rest of the experiment, or to
increase the accuracy of the coordinates of their experimental plots.

Additionally, like Liang et al. [8], we found that the separation between first and last
returns was a useful metric to separate deciduous trees from conifers using data collected
in leaf-off conditions. Liang et al. [8] used two threshold values and observed overall
accuracy of 89.83%. The first threshold was the proportion of pulses where the difference
between the first and last return heights was significant and the second was the height
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difference used to determine whether the difference was significant. We simplified our
canopy penetration metric to the difference in height between the mean of first and last
returns within each crown and established a single threshold value as the mean of the
median values for red alder and conifer species. Overall accuracy for our simple threshold
model using this single metric was 88.04%, which is like the accuracy reported in [8].

In general, overall accuracy was slightly lower when the model was trained using
trees with crowns not overlapped by other tree crowns or overlapped by trees of the same
species. The overall accuracy reported by random forest was slightly higher for models
fit using non-overlapped trees, but the overall accuracy was lower when the model was
evaluated using all non-overlapped trees or all trees including those overlapped. For the
conditions over our study area, canopy densities are high. Based on our tree data, about
66% of the trees with DBH larger than 10 cm were either not overlapped by other trees or
were overlapped by trees of the same species. However, this overlap determination was
done using conservative circular samples. It is likely that the horizontal projection of the
crowns is larger than our sample circles so more trees will overlap than indicated by our
analysis. We also expected that a significant proportion of the 1.524 by 1.524 m cells used to
map the species types would represent more than one species. In general, we felt using the
overlapping trees to fit the models produced a model better suited for mapping species
over the entire study area.

Out of a total of 1599 trees measured on our plots, 978 overlapped and 644 non-
overlapped trees (see Section 2.6 for definitions of overlapped and non-overlapped) were
identified to fit and test our classification model. The random forest model with the best
overall accuracy (95.68%) used the 978 overlapped trees. This sample size is considerably
larger than those used in [7] (377 trees) and [8] (295 trees) but smaller than that used in [9]
(1413 trees) and [21] (13,298 trees). Data were split into training and validation (also called
testing) using a ratio of 70% (training) and 30% for testing. While this ratio is somewhat
arbitrary, we fit and tested models 30 times using different subsets for model training and
observed only small changes in the accuracy. In addition, Korpela et al. [21] reported the
results of tests of the ratio of training to testing data (training data ranging from 2.5–30%)
with random forest and found only slight differences in accuracy (<1% differences overall
for the three species being classified). However, the number of trees used in [21] was much
higher than our study (13,298 trees in [21]) so these results may not apply to our study.

Our results show that LiDAR-derived metrics can be combined with field data to make
a useful training dataset provided you have accurate locations for individual trees. Our
classification model was able to identify red alder and conifer species with high (95.68%)
accuracy. We applied this model using a raster with 1.524 m by 1.524 m cells, which
represents an area that is about the same as the average crown size for the trees. However,
this is still a relatively large area and could contain multiple species. While our goal for
this work was to identify red alder to provide information to support additional studies
regarding the relationship between red alder and understory shrub species, our methods
may be suitable for identifying other species. We did explore, using the same random forest
modeling approach, separating Douglas fir and western hemlock. The preliminary results
were promising but further evaluation and model refinements are beyond the scope of the
work presented here. While we expect the same methodology will work for additional
species, different LiDAR metrics will likely prove to be more useful than those used in our
red alder model. Our LiDAR data were collected in late winter and early spring (mostly
January and February). Red alder flowers in February-March so it is likely that catkins were
forming during the LiDAR data collection period. This may have produced a somewhat
unique “signature” for red alder trees manifested through the point cloud metrics. Efforts
to identify additional species may rely more heavily on metrics describing the vertical
distribution of returns rather than the intensity and penetration metrics that we used for
red alder.

We applied our classification model to an area (3025 ha) much larger than the Sappho
site (416 ha) and compared the results to aerial imagery from 2016 (LiDAR data were
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collected in 2014–2015) (Figure 8). In general, the classification results identified red
alder stands and scattered individual red alder trees across the broader area. Riparian
areas known to have stands dominated by red alder were identified correctly along with
additional treatment areas, not used in this study, within the Sappho site known to have a
high proportion of red alder. While no formal validation was conducted for the area outside
the Sappho site, visual evaluations indicate that the classification model performed well.

We were somewhat surprised that no LiDAR metrics related to the distribution of
return heights proved useful for our final classification model. Our final model relied
on our penetration metric that relates to the porosity of the canopy and intensity metrics.
We performed a visual examination of the circular point-cloud clips for trees produced
using our somewhat conservative approach to estimate the sample radius and found that
there were no morphological features evident to distinguish species. Our study area can be
characterized as having a dense canopy with closely spaced trees so there is overlap between
most tree crown perimeters. While our circular samples produced data representative of the
canopy for our field-measured trees, the clips do not provide easily interpreted information
regarding the crown shape, crown profile, or the arrangement of branches and foliage. In
hindsight, this could explain why no height distribution metrics proved useful for the final
classification model.

Our methods are not without limitations. To duplicate our methods, ground studies
must collect position data for field plots and tree stems (relative to a local reference point
for each plot) to provide a starting point to align the stem maps with the CHMs. These
locations need to be within 5 to 10 m of the true plot locations. Such accuracies are possible
with mapping-grade GNSS receivers [18]. In addition, our study area was relatively small,
and involved a single forest type at a specific stage of development. More robust methods
may be needed for more complex forest types.

Our alignment process relied on manual adjustments to the overall stem map for each
plot. This was practical given the size of our study area and the number of plots. An
automated process is possible. However, given that most trees exhibit some lean or an
offset between the stump and treetop (highpoint) locations, it may be necessary to select
a subset of trees to use with an automated alignment process. Automated alignment is
further complicated by the habit of red alder to shift their crowns to capture light. It is not
uncommon to see an offset of several meters between the stump location and the highest
point of the crown. The best solutions would likely involve extracting individual tree
objects from the point cloud, detecting stems, and using stem locations along with field
locations in an automated process (like the process using terrestrial laser scanning data
reported in [27]). However, the point density of the LiDAR data and the dense overstory did
not provide sufficient data to detect all stems with confidence. Given the size of our study
area and the number of plots involved, we felt a manual adjustment process produced the
best locations for all the trees on the plots.

Furthermore, intensity values used in our study were the uncalibrated, unadjusted
values recorded by the LiDAR sensor and delivered by the vendor. Metrics used in our
classification model included intensity for first returns (First.Int.P60) and intensity for all
returns (Int.IQ and Int.P30). While many studies also use the “raw” intensity values [7,8],
studies that employed range normalization and corrections to reduce the effect of automatic
gain control (AGC) report higher classification accuracies using the adjusted values [28].
Our model might be improved by using adjusted intensity values. However, improvements
in accuracy would likely be minimal.

For our classification model, our variable selection process was not perfect. The
selected variables were not those with the highest importance scores, but they were among
the variables with the highest scores. We experimented with methods to select a subset
of variables, but none performed better than the subset described in the results. Many
of the LiDAR metrics were correlated. Random forest performs well using data with
highly correlated variables, but the resulting importance scores can be misleading. In the
end, variable selection was somewhat subjective using the importance scores produced by
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random forest and the accuracies of the simple threshold models as guides to select the
final subset of variables.

Future research for this classification model includes combining it with other types of
remote sensing technology, such as four-band (RGB and near-infrared) imagery and satellite
imagery. Additional research includes using the same model development approach to
classify Douglas fir and western hemlock, in addition to red alder. Lastly, as stated in our
objectives, we want to use the results of the classification model to explore the relationship
between the presence or absence of red alder and understory species diversity.

5. Conclusions

In this study, we combined LiDAR-derived canopy height models (CHMs) with field-
based tree plot data. We had two main objectives: improve the accuracy of our position
data for an already-existing study site and map the presence of red alder throughout said
study site. Our study expands on the already-existing literature regarding the use of LiDAR
to perform species differentiation. We show that manual, human-based matching of tree
plots to CHMs can create a useful training dataset to build a classification model, as well
as improve the accuracy of plot and individual tree locations. Furthermore, this study
showcases the ability of LiDAR and random forest classification models to differentiate
between red alder and other Pacific Northwest tree species with an accuracy of almost
96%. Future work may explore using similar methods to differentiate between conifer
species in forest stands and perform these analyses over a larger scale to inform operational-
scale work.
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