

What I will cover

- Structure and composition of naturally regenerated westside riparian forests
- Successional patterns following natural disturbances
- Thinning for ecological goals
- Alternatives to standard buffer widths

Riparian Zones: Diverse vegetation on a variable and dynamic substrate

Riparian Vegetation Varies with Stream Size (Order)

Two Case Studies

- Flynn Creek--Deciduous Stand
- Trout Creek--Mixed Conifer Harwood Stand

Mature Hardwood-Conifer Riparian Stand

Range of size of trees Reflects disturbance history

Fires in 1850, 1868, Mid 1880s

Spatial pattern a mature conifer hardwood riparian stand

Old-growth remnants in a Mature Stand

Spatial Pattern in a Mature/old Growth Riparian Stand

Regional Analysis of Mature and Old Growth Riparian Forests

Distribution of Alder Basal Area Oregon Coast Range

Conifer Basal Area Across Coast Range Increases with Distance from Streams

Conifer basal area is highest in low-order drainages

Canopy Cover Varies By Geomorphology and Region

Tree Regeneration Varies with Stream Order

Generalized Trends in Forest Structure with Distance from Stream

Natural Disturbances that Initiate Succession

- Fire
- Landslides
- Debris Flows
- Flooding
- Windthrow
- Stream bank erosion
- Herbivory
- Pathogens

Debris Flows: Initiation, Runout, and Deposition

0.5

Within and Among Basin Heterogeneity in Debris Flow Probability

Upland Successional Trends Following Wildfire

Successional Pathways in Riparian Zones in Coast Range

Canopy Damage and Distance from Stream

A Natural Disturbance Regime Based Approach to Riparian Functions

Northwest Forest Plan

Potential Riparian Management Design for Large Wood Delivery

Plantations in Riparian Zones

Distribution of Plantations In a Late Successional Reserve in Coastal Oregon

Average stand diameter vs age in old growth and in plantations of different densities

High Stand Densities Limit Deciduous Shrub Cover

Why Thin in Riparian Areas?

- Bigger live and dead trees both sooner and in the long run
- Accelerate understory vegetation development
 - Deciduous shrubs
 - Shade tolerant regeneration
- Increase greater spatial heterogeneity at stand level

Diversification of young plantations using variable density Thinning

Some guidelines

- Increase spatial heterogeneity
- Prioritize densest stands first (not all stands may need thinning)
- Don't thin uniformly
- Use combination of heavy thin, moderate thin, light thin, no thin within same stand
- Work with existing heterogeneity (e.g. hardwoods, shrubs)
- Don't use same approach on all stands

Thinning Simulation I Silvicultural treatments on Siuslaw N.F.

Rx code	Age range of plots at time 0	Time step of thinning entries (1 step = 5 years)	Target thinning densities (trees/ha)	Snags created (snags/ha)
Control (no thin)	10-30 years			
А	10-30 years	2	247	0
		6	124	15
		10	74	7
В	10-30 years	2	124	15
		6	74	7
С	10-30 years	2	185	15

Simulated Effects of Thinning and No Thinning on Density of Large Conifers

Trees/ha ≥ 100 cm dbh

Trees/ha 25-50 cm dbh

Diameter Diversity Index

Cumulative snags/ha \geq 50 cm dbh

Thinning Simulation II

- **Rx 000**: grow only (no thinning)
- Rx 111
 - Entry 1 (Period 1)
 - Thin from below to 75 tpa
 - Create 6 snags/ac
 - Entry 2 (Period 6)
 - Thin from below to 40 tpa
 - Create 6 snags/ac

• Rx 141

- Entry 1 (Period 1)
 - Thin from below to 50 tpa
 - Create 6 snags/ac
 - Underplant 75 Tshe/ac + 75 Thpl/ac
- Entry 2 (Period 6)
 - Thin overstory (trees > 14 in dbh) from below to 30 tpa
 - Create 6 snags/ac
 - Thin understory (trees ≤ 14 in dbh) by 50%

• Rx 151

- Entry 1 (Period 1)
 - Thin from below to 75 tpa
 - Create 6 snags/ac

Effects of thinning on number of cumulative number of 10 inch snags

Tradeoffs between Size and Number of Snags for Different Thinning Prescriptions

ZELIG simulation of 3 conifer plantations for 100 years Snag DBH (5-period moving avg) vs. Cumulative # of snags > 10 inches dbh

Effects of thinning on number of cumulative number of 20 inch snags

Tradeoffs between Size and Number of Snags for Different Thinning Prescriptions

ZELIG simulation of 3 conifer plantations for 100 years Snag DBH (5-period moving avg) vs. Cumulative # of snags > 20 inches dbh

What do we know about Riparian Vegetation relative to uplands

- Structured by geomorphic template
- Interactions with stream
- Higher spatial heterogeneity
- Greater proportion of deciduous cover
- Shrub dominated areas often occur

What do we know about Riparian Vegetation relative to uplands

- Edge dominated
- More natural disturbances
- Multiple pathways of succession
- Structure and succession vary with stream size and distance from stream

Plantations differ from unmanaged riparian vegetation

- More uniform
- More conifers
- Smaller trees
- Less shrubs and hardwoods
- Less potential for big tree development

Thinning in plantations

- Can accelerate big trees and shrub layer
- Will reduce number of dead boles
- Use variable density approach
- Not all stands suitable for thinning
- Prioritize based on stand and landscape level considerations

Alternatives to Standard Riparian Buffer Prescriptions

- Based on fire regimes—variable width and shape
- Based on wood delivery potential
 - Not all streams have same potential
 - Vary width