CMER Data Use Notification

Proponent: Roads Project Team	Date: 10 April 2024					
Contact: Amanda Alvis amanaste@uw.edu	PM: Alexander Prescott					
Charles Luce Charles Luce@usda.gov (PI)	alexander prescott@dpr wa gov					
Project Name/Issue: Road Prescription Scale Effectiveness Manitoring Project						
roject Numerissue. Roud Presemption Source	Enceriveness monitoring riojeet					
Notification : Use of data collected during the l	Road Micro-Topography Evolution					
parameterization experiment in a paper discussing the experiment's results and implications.						
r						
Funding Source: NA	Urgeney: High					
Data Description : The PI and other members of th	e Project Team principally Mrs Alvis a UW doctoral					
candidate, are writing a paper discussing the results	s of the Roads Prescription-Scale Effectiveness					
Monitoring Project's Road Micro-Topography Evo	itoring Project's Road Micro-Topography Evolution parameterization experiment. This paper,					
rently entitled Temporal evolution of forest road micro-topography and flow pathways, discusses using						
occupied aerial vehicle (UAV) structure-from-motion (SfM) technology to examine how wheel ruts						
lve on mainline logging roads following road grading and the implications of said rut formation on the						
ad surface drainage system. This paper will be submitted to a peer-reviewed journal by June 2024 at the						
latest (exact journal and date TBD).						
Below are the figures and tables presented in the cu	irrent naner draft. The figures may change slightly as					
edits to the paper are made, but the content should	ures and tables presented in the current paper draft. The figures may change slightly as are made, but the content should remain largely the same. presents a map of the field sites.					
 Figure 1 presents a map of the field sites. 						
 Table 1 denotes seasons, dates, types, and times since baseline at each field site. 						
• Figures 2-6 are presented to help explain da	Figures 2-6 are presented to help explain data processing and analysis methods.					
• Figure 2 shows example orthoimages and digital elevation models (DEMs) overlaying						
hillshades for the first survey at each field site.						
• Figure 3 shows example difference maps for wet season year 2 (WSYR2) at one of the						
field sites (MEL-14) for both pre-	and post-Gaussian filtering.					
• Figure 4 shows example cross-sectional profiles of unoccupied aerial vehicle (UAV)-						
Eigure 5 shows example empirical	IKZ.					
at MFL-14 for WSVR2 with a line	e denoting the 5^{th} percentile, which is used as a measure					
of rut incision.	e denoting the 5° percentile, which is used as a measure					
• Figure 6 shows example drainage a	area maps for each of the surveys during WSYR2 at					
MEL-14 developed using a Landla	b flow routing component.					
• Figure 7 is a schematic showing potential flow pathways for an idealized road surface and a rutted						
road surface to help explain the implication	ns of rut evolution.					
• Table 2 and Figures 8-10 are the main results of the study.						
\circ Table 2 lists the maximum rut incis	sion depth in centimeters for all three seasons at each					
Figure 8 shows the relationship het	ween rut incision denth in meters and time since					
grading in months for both field sit	res. This demonstrates the rate of rutting					
\circ Figure 9 shows the relationship bet	tween the normalized drainage area center of mass					
(CM_{da}) and time since grading in n	nonths for both field sites with respect to the					
normalized drainage area center of	mass for an ideal surface.					
• Figure 10 shows the relationship be	etween fraction of total drainage exiting through the					
lowest boundary of the road segme	ent (R_{da}) and time since grading in months for both field					
sites. This is a way to measure the	impact of ruts on flow pathways.					
One more figure may be included in future iterations of the paper that shows the impact of ruts on an						
erosion index of the road surface but requires furthe	are may be included in future iterations of the paper that shows the impact of ruts on an of the road surface but requires further discussion among co-authors.					

erosion index of the road surface but requires further discussion among co-authors.

Figure 1. Map of field site locations in Washington state. Inset A zooms in on MEL-14, the field site in the siltstone lithology and inset B zooms in on KID-13, the field site in the volcanic lithology.

Site	Season	Date of survey	Type of survey	Time since baseline
KID-13	Wet season year 1 (WSYR1)	11/09/2020	UAV; TLS	0
		02/08/2021	UAV	3 months
		04/06/2021	UAV	5 months
		05/13/2021	UAV; TLS	6 months
	Dry season year 1 (DSYR1)	06/04/2021	UAV; TLS	0
		08/19/2021	UAV	2.5 months
		09/13/2021	UAV; TLS	3.5 months
	Wet season year 2 (WSYR2)	10/07/2021	UAV; TLS	0
		02/08/2022	UAV	4 months
		05/03/2022	UAV	7 months
		05/31/2022	UAV; TLS	8 months
MEL- 14	WSYR1	12/03/2020	UAV; TLS	0
		02/24/2021	UAV	2.5 months
		04/12/2021*	UAV*	4.5 months*
	DSYR1	06/03/2021	UAV; TLS	0
		09/14/2021	UAV; TLS	3.5 months
	WSYR2	03/09/2022	UAV; TLS	0
		03/16/2022	UAV	1 week (0.25 months)
		03/24/2022	UAV	2 weeks (0.5 months)
		04/11/2022	UAV	4 weeks (1 month)
		04/28/2022	UAV	7 weeks (1.75 months)
		06/01/2022	UAV; TLS	12 weeks (3 months)

Г

Figure 7. Schematic of a crowned road segment showing the flow pathways for (a) an idealized (i.e., perfectly smooth) road surface and (b) a rutted road surface.

Figure 8. Plot showing the relationship between rut incision depth with respect to time since grading in months for (a) KID-13 and (b) MEL-14.

Figure 9. Plot showing the relationship between the normalized drainage area center of mass (CM_{da}) and time since grading in months for (a) KID-13 and (b) MEL-14.

