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EXECUTIVE SUMMARY 

Understanding present and potential movement of deep-seated landslides (DSLs) in western 
Washington is a long-studied and difficult problem. In Washington State, DSLs occur within many 
lithologies, climate regimes, and timescales. Different geographies may be more or less sensitive 
to natural and anthropogenic landslide triggering mechanisms. Traditionally, DSLs have been 
studied individually because they are highly variable, and geologists have lacked the 
tools/technologies necessary to gather information at broader scales (Miller, 2017). However, 
major advances in remote sensing offer opportunities to classify or group DSLs based on factors 
such as their geology, failure type, landscape position, and velocity patterns, in conjunction with 
the application of a variety of statistical analysis techniques, at regional scales (defined as > 1,000 
km2; Woodard, et al., 2023). 

This Study Design Report lays out a framework and design guidance for a proof-of-concept pilot 
study utilizing remotely sensed data in an effort to characterize several thousand landslides within 
a regional study area. Characterization will occur by combining landslide movement data from 
interferometric synthetic aperture radar (InSAR) and lidar change detection technologies that 
measure landslide velocities with other regional datasets (e.g., existing landslide inventories, 
geological mapping, topography, land use, hydroclimate). This combined effort will facilitate the 
classification of DSLs into common groupings and characterize regional drivers for landslide 
velocity changes. The purpose of this study is to develop a landslide classification scheme based 
on an improved understanding of landslide characteristics and activity levels. It is part of a larger 
deep-seated landslide research strategy to understand and anticipate landslide behavior and 
sensitivity to forest management.  

The four-county study area proposed by the Upslope Process Scientific Advisory Group (UPSAG) 
has extensive landslide mapping by the Washington Geologic Survey (WGS), historical synthetic 
aperture radar (SAR) coverage (covering large periods of the past 30 years) and overlapping lidar 
acquisitions (over the past 17 years). Relative to other areas around the globe, this is a very high 
density of data coverages that can assist in developing an understanding of spatial and temporal 
variations in landslide activity at a regional scale. This study targets specific sub-regions within 
the proposed four-county area. As originally proposed, the four-county area is likely not practical 
for a single study because of the significant amount of data and logistical constraints. The smaller 
sub-regions were identified based on an overlap of high-quality remote sensing data and a 
representative cross-section of landslide types; particularly the availability of multiple repeat lidar 
data sets and the spatial and temporal density of archived SAR data that could support generating 
InSAR deformation data. The following sub-regions have been identified to execute the Mapping 
and Classification Pilot Study: 

• Option 1a and 1b: Western Whatcom County (Mount Baker to Lower Nooksack River) and 
the Upper Snohomish River System (Snoqualmie and Skykomish Rivers) – 2,700 km2 

• Option 2 (includes 1b): Snohomish County (Sloan Peak to Snohomish) and the 
Snoqualmie River Valley (Fall City to Monroe) – 3,600 km2. 
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Each study area has been selected to provide a cross section of landslide classes and clusters 
that provide a statistically robust data set to support understanding the sensitivity of landslides to 
natural processes and human disturbance.  

For each of the areas described above, a targeted region-specific program of ground velocity data 
collection and processing would be undertaken, and these data would be integrated into a 
structured data schema for mapped landslides in the region. It is expected that the following 
velocity/displacement data would be integrated at each landslide polygon by a landslide 
practitioner: 

• Confirmation of presence or absence of measurable displacements across the collection 
period for the data utilized 

• Annualized displacements to support screening different relative landslide activity zones 
across clusters 

• Discrete velocity trend data to support variation in velocity in relation to seasonal and 
multi-year fluctuations in hydroclimatic conditions, surface vegetation change and/or 
human modification of the ground surface.  

The above observations would be entered into a database with schema designed to support 
integration of these data sets into various modelling efforts for other projects that contribute to the 
broader programmatic objectives. To develop a data-driven understanding of the linkages 
between velocity trends and extrinsic factors (such as hydroclimatic influences and human 
disturbance), the design report outlines key publicly available datasets that could be integrated 
with velocity data. 

The project outlined in this Study Design Report is derived from the Cooperative Monitoring, 
Evaluation, and Research (CMER) Scoping Document (UPSAG, 2020). However, the intent of 
the Scoping Document was to investigate why landslides with similar characteristics may exhibit 
differences in activity level. This was envisioned to include an early field effort focused on specific 
landslides of interest within clusters, with a field methodology developed in an iterative fashion to 
support the overall DSL classification, including research that has shown that some DSLs are 
triggered by local subsurface hydrogeological and stratigraphic differences (Miller, 2016, 2017; 
Iverson et al, 2015). The Study Design takes a slightly different approach and is based on remote 
sensing techniques that utilize velocity trends to develop a spatial understanding of the variability 
in landslide activity across the study area. Following the development of a landslide inventory, 
activity, and velocity time-series database, the study will use statistics to analyze the data. Field 
work will primarily focus on verification of the insights derived from remote sensing data analysis. 
The novel hybrid methodology described in the Study Design is untested in this area, as are the 
mixed methods described in the Scoping Document. 

The following comparison between the research objectives listed in the CMER Scoping Document 
(UPSAG, 2020) and the Study Design offers information on how the original research objectives 
will be met with a focus on activity level: 
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Table 1-1. Comparison between the CMER Scoping Document research objectives and the Study Design plan. 

Research objectives defined by CMER (UPSAG, 2020) Study Design Explanation of Differences

Identify distinguishing characteristics within and between DSLs with
similar geomorphic, topographic, stratigraphic, hydrologic, and
climate settings.

Section 5.3 provides a methodology that utilizes statistics derived
from the existing landslide inventories to support designation of
landslide classes and the use of different morphological attributes
to define landslide clusters.  

The Scoping Document envisioned classifying DSLs by identifying
their controlling characteristics through a hypothesis-driven
iterative process, including field validation early in the
classification process. It makes use of existing qualitative and
quantitative data. The study design utilizes statistics throughout
the workflow to analyze quantitative inventory and remote regional-
scale data in conjunction with movement and velocity technology
(InSAR and LiDAR change detection (LCD)). 

Investigate why landslides with similar characteristics may exhibit
differences in activity level. Can activity levels of individual DSLs
within and between clusters be linked to sensitivity to hydrologic or
other change?  

Section 5.4 describes how data obtained from globally available
hydroclimatic models and remote sensing-derived products can
spatially and temporally link these transient conditions to
differences in landslide activity. 

The Scoping Document envisioned a process that relied on
identification of clusters and field verification while the Study
Design relies on statistical analysis of remote sensing data to
investigate the linkage between DSL movement and hydrologic and 
other data. 

Develop causal mechanism hypotheses for individual landslides
evaluated in the field. These mechanisms might be evident through
hydrogeologic characteristics visible in active landslides.  

Temporally and spatially continuous regional velocity and
displacement observations will be linked to the landslide inventory
polygons that partially inform the designation of landslide classes
and clusters. These will be used for modelling with the
hydroclimatic and land cover datasets to derive relationships
between landslide attributes and these external drivers. After the
classification process is complete, differences in landslide activity
across similar landslides will be utilized to guide field validation of
hypotheses as to what is driving landslide activity change at the
local scale.  

The Scoping Document has a stronger focus on understanding
causal mechanisms at local scales. The Study Design de-
emphasizes identifying causal mechanisms for individual
landslides, instead focuses on finding relationships across a
region. 

Determine the best remote sensing tools, field assessment and
other methods to classify DSLs in a manner that will improve our
understanding of the relative potential for DSL reactivation or
accelerated movement. What data are necessary to estimate the
relative sensitivity of DSLs within a class?  

Section 5.2 provides an overview of the existing remotely sensed
data and considerations for integration to best support the
classification tasks. The application of the existing remotely
sensed data will support understanding as to which tools are most
effective in deriving the critical variables and will support the
optimization of data collection for future focus areas.  

The Scoping Document asks what methods are best for classifying
the DSLs to provide new information and insights. The Study
Design (section 5.2) is concerned with the efficacy of InSAR and
LiDAR Change Detection technologies as useful method to
classify DSLs. 

Define classes of DSLs within and across clusters using a suite of
physical attributes based on critical variables. These classes will
also be used to support future phases of the research strategy (i.e.,
which DSLs are most representative or illustrative for future research 
and modeling efforts based on the results of the classification
project). What are the critical independent (predictor) variables
necessary to define DSL classes?  

Sections 5.0 and 6.0 provide information about these variables and
their integration into future phases.  

The Scoping Document intended to define classes of DSLs based
on critical independent variables. The Study Design has no
distinction made between independent and dependent variables in
the statistical analyses. Instead, all variables mentioned in
sections 5.0 and 6.0 may be analyzed for correlations, because
some dependent variables may be critical to assessing sensitivity. 

Evaluate if certain classes of landslides have a high or low potential
for instability from forest practices and rank classes based on
multiple sources of empirical evidence.  

To test an initial hypothesis that DSLs can be effectively ranked
and classified based on multiple sources of empirical evidence,
and that certain classes of landslides have a particularly high or
low potential to experience an increase in instability from forest
practices. This document outlines an approach that would
subdivide landslides based on attributes such as lithology, size,
failure depth, and geomorphic position and correlate these with
velocity and extrinsic drivers (hydroclimate, land use, land
disturbance) to assess which landforms are most sensitive to
human disturbance.  

The Scoping Design and the Study Design share the same goal to
identify and evaluate landslide classes. However, the
methodologies differ, as described above in this table.
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The work plan outlined in this report is meant to provide a basis to directly inform and support the 
overall deep-seated landslide research strategy by providing a robust set of data and tools to 
understand historical trends to calibrate models that will support the understanding of the intrinsic 
and extrinsic contributions to landform sensitivity. 
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LIMITATIONS 

BGC Engineering Inc. (BGC) prepared this document for the account of Washington Department 
of Natural Resources. The material in it reflects the judgment of BGC staff in light of the 
information available to BGC at the time of document preparation. Any use which a third party 
makes of this document or any reliance on decisions to be based on it is the responsibility of such 
third parties. BGC accepts no responsibility for damages, if any, suffered by any third party as a 
result of decisions made or actions based on this document. 

 



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 
Study Design Project No.: 2365001 

Document 11. WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 1 

BGC ENGINEERING USA INC. 

INTENT OF THIS DOCUMENT 

This document contains a technically complex and rigorous study design to interrogate 
deep-seated landslides in Washington, USA. The intent of the document is to guide a qualified 
consultant in addressing the critical research questions outlined in Section 1.0. The methodology 
outlined in this report provides a sufficient level of detail to guide a consultant with foundational 
expertise in the geological and kinematic understanding of deep-seated landslides and the 
application of remote sensing tools to develop a spatial understanding of the variability in landslide 
activity across the study area chosen.  

The field of leveraging large remote sensing datasets to evaluate spatiotemporal patterns of 
landslide behavior at scale is a rapidly evolving field. This document provides recommendations 
based on the authors’ current understanding of the state of science. However, it is recommended 
that the project team carefully evaluate advances at the project outset and alter the scope 
accordingly should new techniques be demonstrated that can advance the objectives of this 
study. In some portions of this document, the authors have determined it is premature to offer 
detailed workflows and instead point to potential frameworks and suggestions for data analysis. 
The state of the science at the time of evaluation should be brought to bear on the problem of 
evaluating landslide sensitivity in the context of forestry operations, and a great deal will be 
learned about the best analytical methods once initial data compilation and analysis is complete.  

For these reasons, it is recommended that any organization attempting to undertake this study 
demonstrates at a minimum the following qualifications: 

• The study should be overseen by a qualified geological engineer or engineering geologist 
with demonstrated understanding of landslide processes in complex glaciated and 
bedrock environments. As an example, the Washington State Department of Licensing for 
Geologists provides specific guidelines in Washington State as to the qualifications and 
experience required to undertake landslide studies. Professionals that have received their 
Licensed Engineering Geologist specialty license have demonstrated qualifications and 
experience in the following key areas: 

○ Knowledge of the geology of the state of Washington. 
○ Skill and ability in use of geotechnical field classification systems for soil and rock. 
○ Ability to recognize landforms from surficial and deep-seated geologic processes. 
○ Knowledge and ability to evaluate and analyze soil and rock mechanical 

relationships. 
○ Knowledge of the appropriate application of geotechnical laboratory testing 

methods. 
○ Ability to interpret and portray engineering geologic information and data three 

dimensionally, at a scale appropriate for site-specific applications. 
○ Knowledge and understanding of the principles of grading codes, as well as critical 

areas, shoreline, and other pertinent regulations. 
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• In addition to the foundational qualifications that an experienced geoscience professional 
brings to this study, the team executing the study should have demonstrated experience 
in the following areas: 

○ Advanced knowledge of the proposed tools and technologies, including, but not 
limited to, interferometric synthetic aperture radar (InSAR), lidar, database design, 
and physical and statistical modeling for landslide processes. This includes 
demonstrated project experience in the integration of various monitoring 
technologies to develop hypotheses related to kinematics of shallow and deep 
landslide processes. Demonstrated experience should include an evaluation of the 
limitations of each technology for understanding landslide kinematics.  

○ Experience with both remote and field-based landslide characterization, including 
velocity and activity estimates. This includes a demonstration of previous 
consideration of multi-sensor approaches to characterize local and regional 
velocity changes. This includes the demonstration of the understanding of the 
underlaying monitoring technologies and how these measurement techniques can 
be utilized to characterize landslide velocity trends. 

○ Advanced geospatial data analysis capabilities, including demonstrated project 
experience in generating multi-temporal spatial databases and integrating these 
databases into statistical and/or physically based landslide models.  
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1.0 INTRODUCTION 

1.1. Project Background 

The Washington State Forest Practices Board (Board) approved a comprehensive package of 
forest practice rules in 1999 (Forests & Fish Report) adopted by the Washington state Legislature 
in 2001. 

The Washington forest practices Habitat Conservation Plan (HCP) lists a key resource objective 
under sediment as a “Functional objective” to:  

Provide clean water and substrate and maintain channel forming processes by minimizing to the 
maximum extent practicable, the delivery of management induced coarse and fine sediment to 
streams (including timing and quantity) by protecting stream bank integrity, providing vegetative 
filtering, protecting unstable slopes, and preventing the routing of sediment to streams 
(HCP, Schedule L-1, Appendix N).  

The Board’s Adaptive Management Program (AMP) is designed to provide science-based, 
technically sound recommendations and guidance in support of the resource objectives related 
to aquatic habitats and water quality outlined in the WA forest practices HCP. The Cooperative 
Monitoring Evaluation and Research (CMER) committee was formed to conduct research in 
support of the AMP meeting the HCP’s resource objectives, including empirically defining classes 
of deep-seated landslides (DSLs) based on critical variables controlling the occurrence and failure 
mode. 

In response to the Oso DSL in 2014, the WA Forest Practices Board directed CMER to update 
their DSL research strategy. To support the initiatives of the Board, the Upslope Processes 
Scientific Advisory Group (UPSAG) issued the Deep-Seated Landslide Research Strategy 
(UPSAG, 2019) and the Deep-Seated Landslide Mapping & Classification Project Scoping 
(Scoping) (UPSAG, 2020) documents to CMER. The Strategy document outlines a collection of 
successive and interrelated projects to determine if relative levels of landslide response to forest 
practices can be predicted by key observable characteristics of DSLs and/or their groundwater 
recharge areas. The Scoping document outlines a research plan to empirically define and 
characterize classes of DSLs based on critical variables that control the occurrence and type of 
landslide failure. This type of classification is part of a unique effort by the Washington State 
Department of Natural Resources (DNR) to develop a broader understanding of DSLs as they 
relate to natural processes and human disturbance. For this study a landslide will be classified as 
“deep” if the slide plane lies below the vegetation rooting zone, which is typically greater than 
10 feet (~ 3 meters), as defined in the Washington Forest Practices Board Manual 5/2016 
(WFPB, 2016). 

To support these efforts, BGC Engineering Inc. (BGC) was retained by the DNR to draft a study 
design for a mapping and classification project for DSLs in Washington State. This study design 
is one part of the broader Strategy scheme and combines two parts of the plan, including Project 
4.5 - Mapping and Project 4.6 – Classification (Figure 1-1).  
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1.2. Definitions and Acronyms 

The following definitions and acronyms are provided to explain in more detail some of the 
terminology used throughout this document. Some of the definitions included were sourced from 
the UPSAG Scoping document. 

• ALOS – Advanced Land Observing Satellite. 
• AMP – Adaptive Management Program. 
• Asc – Ascending satellite orbit (as related to InSAR data collection). 
• BDSL – Bedrock Deep-Seated Landslide. A deep-seated landslide with a failure plane 

within bedrock. 
• Board – Washington State Forest Practices Board. 
• CMER – Cooperative Monitoring, Evaluation and Research committee. 
• Critical Independent Variables – In terms of landslides and in the context of this study 

design, critical variables are those for which it has been determined through data-driven 
statistical analysis to have the strongest influence on landslide activity and sensitivity. 

• CSA – Canadian Space Agency. 
• DEM – Digital Elevation Model. 
• Desc – Descending satellite orbit (as related to InSAR data collection). 
• DNR – Washington State Department of Natural Resources. 
• DSL – Deep-seated landslide. A landslide with a body and failure plane. The failure plane 

lies below the tree root zone. This depth can range from ten to several hundreds of feet 
below the ground surface. Simple, rapid failures such as debris flows and debris 
avalanches are not deep-seated landslides regardless of failure depth. 

• ERS – European Remote Sensing satellite. 
• ESA – European Space Agency. 
• Forest practices – forestry-related activities on lands regulated by the Washington Forest 

Practices rules (i.e., timber harvest, road construction and rock quarrying). 
• GDSL – Glacial Deep-Seated Landslide. A deep-seated landslide with a body and failure 

plane within glacial deposits.  
• GIS – Geographic Information Systems. 
• Hydrologic sensitivity – the likelihood of landslide reactivation following a hydrologic 

change related to the movement and distribution of water.  
• Harvesting – In terms of forestry operations, this pertains to different processes by which 

timber is selected, fallen and removed from the landscape. Common examples of forest 
harvesting systems are clearcut, seed-tree, shelterwood, and selection harvest. Logging 
roads are associated with timber harvesting activities, which include original road 
construction and maintenance. 

• InSAR – Interferometric Synthetic Aperture Radar. 
• JAXA – Japanese Space Agency. 
• Landslide Class – A group of DSLs with similar characteristics. Classes of DSLs can occur 

in spatially discontinuous areas (i.e., in different clusters). 
• Landslide Cluster – A sampling unit encompassing proximal DSLs with similar 

geomorphologic, topographic, hydrologic, and stratigraphic settings. Preliminary clusters 
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will be established with GIS tools and may be refined with field data. The intent is that 
landslides in a cluster are located close together and their critical variables are 
homogeneous. The DSLs within a cluster are expected to respond to natural and 
anthropogenic triggers similarly, facilitating an analysis of sensitivity. 

• Landslide sensitivity – the likelihood of landslide reactivation or acceleration following a 
change in condition (e.g., toe erosion, ground disturbance, etc.). 

• LCD – Lidar Change Detection. 
• Lidar – light detection and ranging. 
• LoS – Line of Sight. When using InSAR for deformation measurement, the component of 

the displacement vector in the LoS of the satellite is being measured (vector between the 
satellite and the imaged surface). 

• LULC – Land Use/Land Cover. 
• NiSAR – NASA-ISRO Synthetic Aperture Radar (ISRO - Indian Space Research 

Organization). 
• PALSAR – Phased Array-type L-band instrument. 
• R1 – Radarsat-1. 
• R2 – Radarsat-2. 
• SAR – Synthetic Aperture Radar. 
• Scene – In the context of InSAR data satellite coverages, a “scene” is an individual image 

acquisition of SAR data.  
• Scoping – The Deep-Seated Landslide Mapping & Classification Project Scoping 

document. 
• SLIP – Streamlined Landslide Inventory Protocol. 
• SME – Subject Matter Expert. 
• Stack – In the context of InSAR data satellite coverages, a “stack” is a collection of 

overlapping, repeatedly-collected scenes covering the same spatial footprint over different 
time periods. 

• Strategy – The Deep-Seated Landslide Research Strategy document. 
• TPI – Topographic Position Index. 
• Trigger – The final factor that causes DSL failure at a moment in time. 
• USDA – United States Department of Agriculture. 
• UPSAG – Upslope Processes Scientific Advisory Group. 
• USGS – United States Geological Survey. 
• WGS – Washington Geological Survey. 

1.3. Problem Statement and Purpose  

DSLs in Washington State are complex, and their distribution and activity levels vary greatly 
because of both intrinsic and extrinsic factors. The Scoping document identifies a range of critical 
variables such as geologic materials, climate regimes, and timescales, and different geographic 
locations which may lead to different sensitivities to modern natural and anthropogenic landslide 
triggers. In particular, the AMP is interested in the potential effects of hydrologic inputs from 
forestry activities on the different classes of DSLs, especially at sites where landslides have the 
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potential to degrade fish habitat, water quality, or threaten public safety. Based on the complex 
and diverse context of Washington State and the specific focus of] forest practices rules on DSLs, 
it is a priority to create an applicable, effective, and geologically sound DSL classification system.  

The purpose of the current study design is to empirically classify and define DSLs across 
Washington which are inferred to represent a range of potential sensitivities to natural and forest 
practice triggers. The classification scheme will be based on critical variables with controlling 
influence over the occurrence and type of landslide failure. The landslide classes developed 
during this study will be used to target a subset of landslides for future focused efforts according 
to the Strategy: those landslide classes that may be prone to an increase in slope movement 
activity due to timber harvest or forest road construction. 

The overall Strategy (UPSAG, 2019) focuses on the following critical key questions from the 
CMER Work Plan: 

1. Can relative levels of landslide response to forest practices be predicted by key 
characteristics of deep-seated landslides and/or their groundwater recharge areas? 

2. Does harvesting of the recharge area of a deep-seated landslide promote its instability? 
3. Are unstable landforms being correctly and uniformly identified and evaluated for potential 

hazard? 

To address these questions, DNR has organized a series of complimentary and interdependent 
projects that are defined below in Figure 1-1.
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Figure 1-1. Conceptual linkages of the projects outlined in the Deep-Seated Landslide Research Strategy (UPSAG, 2020). 
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1.4. Critical Sub-Questions and Research Objectives 

This study design document will provide guidelines and a framework to leverage the rich dataset 
of mapped DSLs in Washington (e.g., Mickelson et al., 2017, 2019, 2020; Miller, 2016, 2017; 
Xu et al., 2021; Herzig et al., 2023) and to intersect these mapped regions with both physical 
(e.g., land cover changes, surface roughness) and velocity characteristics (e.g., velocity estimates 
from interferometric synthetic aperture radar, lidar change detection, or direct monitoring). This 
will support DNR in understanding the variability amongst DSLs in the specified study area and 
allow for an empirically supported and repeatable landslide classification schema which may 
inform probabilistic estimates on the future variability of landslide behavior, such as sustained 
movement, reactivation, or cessation. The study area including Whatcom, Snohomish, King, and 
Pierce Counties will be used to implement a proof-of-concept that will demonstrate how the 
intersection of mapped DSLs with remotely sensed data could support addressing the critical 
sub-questions and the research objectives. 

1.4.1. Critical Sub-Questions  

The critical sub-questions, from the CMER Scoping Document (UPSAG, 2020), specific to this 
current study design are as follows: 

1. What are the distinguishing characteristics among DSLs within similar geomorphic, 
topographic, stratigraphic, hydrologic, and climatic settings? 

2. Can activity levels of individual DSLs within and between clusters be linked to their 
sensitivity to hydrologic change? 

3. What are the critical variables necessary to define DSL classes? 
4. What data are necessary to estimate the relative sensitivity of DSLs within a class? 
5. Are there particular classes of DSLs that have a greater or lesser potential for instability? 

1.4.2. Research Objectives 

The outcomes of this study design will specifically address the following research objectives. As 
outlined in the Scoping document (UPSAG, 2020), these objectives directly explain the outcome 
of the acquisition and analysis of the data required to answer the key critical sub-questions.  

Research objectives defined by CMER (UPSAG, 2020) are as follows: 
1. Identify distinguishing characteristics within and between DSLs with similar geomorphic, 

topographic, stratigraphic, hydrologic, and climate settings. 
2. Investigate why landslides with similar characteristics may exhibit differences in activity 

level. Can activity levels of individual DSLs within and between clusters be linked to 
sensitivity to hydrologic changes or other? 

3. Develop causal mechanism hypotheses for individual landslides evaluated in the field. 
These mechanisms might be evident through hydrogeologic characteristics visible in 
active landslides. 

4. Determine the best remote sensing tools, field assessment and other methods to classify 
DSLs in a manner that will improve our understanding of the relative potential for DSL 
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reactivation or accelerated movement. What data are necessary to estimate the relative 
sensitivity of DSLs within a class? 

5. Define classes of DSLs within and across clusters using a suite of physical attributes 
based on critical variables. These classes will also be used to support future phases of 
the research strategy (i.e., which DSLs are most representative or illustrative for future 
research and modeling efforts based on the results of the classification project). What are 
the critical independent (predictor) variables necessary to define DSL classes? 

6. Evaluate if certain classes of landslides have a high or low potential for instability from 
forest practices and rank classes based on multiple sources of empirical evidence. 
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2.0 PHYSIOGRAPHY AND GEOLOGICAL SETTING 

2.1. Study Area 

As part of the Scoping Document, UPSAG considered several study alternatives focusing on 
Glacial Deep-Seated Landslides (GDSLs) and/or Bedrock Deep-Seated Landslides (BDSLs) and 
targeting different geographic areas ranging from four counties up to nine counties in Western 
Washington. UPSAG’s preferred option (Alternative 2) considered the mapping and classification 
of both GDSLs and BDSLs across Whatcom, Snohomish, King, and Pierce counties (Figure 2-1). 
The following sections of this report will review the available data sources for coverage and quality 
and provide recommendations for a smaller area for which to execute a more detailed study. 

 
Figure 2-1. Maximum proposed study area in western Washington. 

2.1.1. Physiographic Regions and Geological Setting 

A rich tectonic, volcanic, and glacial history has developed several distinct physiographic 
provinces in Washington State. The study area of this project crosses three distinct physiographic 
regions, the Northern Washington Cascades, the Southern Washington Cascades, and the Puget 
Lowland, discussed below (DNR, n.d.; Figure 2-2). 
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2.1.1.1. Northern and Southern Washington Cascades 

The Cascade Range, spanning over 500 miles from northern California to British Columbia 
contains the highest peaks in Washington State and records a complex geologic history spanning 
the last 400 million years. Within western Washington, the Cascade Range is composed of 
various terranes that were accreted to North America that were then subsequently folded, buried, 
faulted, uplifted, and moved to their present location (Brown, 1987; Haugerud & Tabor, 2009; 
WGS, 2022a; 2022b). This complex assembly of metamorphic mélange, sedimentary, and 
intrusive igneous rocks was later intruded and partially covered by volcanic deposits of the 
Cascade volcanic arc (Haugerud & Tabor, 2009, WGS, 2022a).  

Despite the shared history of terrain accretion, tectonism, and volcanism, the Washington 
Cascades can be split into Northern and Southern physiographic regions based upon their 
geomorphic expressions and surficial geologic compositions (DNR, n.d.). The North Cascades 
physiographic region, which extends from Snoqualmie Pass in the south to the US-Canadian 
border in the north, is steep, rugged, and primarily exposes rocks of the various accreted terranes 
(WGS, 2022a; 2022b). The South Cascades physiographic region which extends south to the 
Columbia River, however, is dominated by surficial volcanic deposits derived from the Cascade 
volcanic arc and the Columbia River lava flows. Similar rocks of the older accreted terranes are 
present within the southern Cascades but are primarily buried by younger volcanic deposits 
(WGS, 2022a; 2022b). During the late Pleistocene, the Cordilleran ice sheet covered all but the 
highest peaks of the Northern Cascades (Porter & Swanson, 1998; Thorson, 1980) producing the 
ruggedness and higher relief within this area relative to the unglaciated southern Cascades. 
Alpine glaciers persist to this day within both physiographic regions, occupying the high elevation 
slopes.  

2.1.1.2. Puget Lowland 

During the Pleistocene, multiple glacial advances and retreats of ice sheets formed the 
modern-day Puget Sound and associated Puget Lowland, where most of Washington’s population 
currently resides (Armstrong et al., 1965; Easterbrook et al., 1967; Easterbrook, 1992; 
Mullineaux et al., 1965; Porter & Swanson, 1998). Sediments and erosional features left behind 
by the most recent of these glaciers, referred to as the Fraser Glaciation (Armstrong, 1965), 
dominate the landscape within the Puget Lowland. Deposits associated with the Fraser Glaciation 
range from coarse tills and outwash to fine-grained glaciolacustrine and glaciomarine deposits 
(WGS, 2022a; 2022b). These deposits have distinct markings on the landscape in various forms 
including moraines, flutes, terraces, drumlins, eskers, kettles, and kames. Stratigraphic 
sequences of different glacial deposits (e.g., outwash overlying till) play an important role in 
groundwater hydrology (Kahle & Futornick, 2012) and slope stability (e.g., Heller, 1981; 
Perkins et al., 2017) due the abrupt changes in material properties (e.g., grain size, degree of 
compaction, hydraulic conductivity).  
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Figure 2-2. Physiographic regions within the proposed study area (Data source: DNR). 
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3.0 DATA SOURCES 

The following sections describe suggested geospatial and tabular datasets covering the larger 
study area (Figure 2-1) which could assist in execution of the proposed study. As additional data 
sources become available, however, we recommend the evaluation and possible incorporation of 
those data. Further considerations regarding data assimilation and data analysis are discussed 
in Section 4.0. 

3.1. Geospatial Data 

The following provides an overview of the publicly available geospatial datasets that are available 
to support the project and therefore are considered as part of the design. 

3.1.1. Geological Maps 

3.1.1.1. Map Scales and Coverage 

The WGS offers free, publicly available geologic maps in GIS format across the state of 
Washington at various scales. Seamless geologic map coverage is available across the state at 
scales of 1:500,000, 1:250,000, and 1:100,000 (WGS, 2022a; 2022b; 2019; 2016). The WGS also 
provides 1:24,000 geologic maps across portions of the state and are actively mapping additional 
quadrangles at 1:24,000 scale each year. Within the study area, 1:24,000 coverage is available 
across much of the western portions of Snohomish and King Counties but is only available in a 
small subset of quadrangles in Whatcom and Pierce counties (Figure 3-1). As such, the proposed 
study will likely rely on the 1:100,000 geologic map series (WGS, 2016) since it is the highest 
resolution of seamless coverage across the entirety of the study area. However, the study may 
use 1:24,000 maps where available. Geologic maps provide broad spatial distributions of geologic 
units. They do not provide site specific stratigraphy or consistent details about geologic 
heterogeneity. 

3.1.1.2. Geologic Attributes 

1:100,000 and 1:24,000 geologic maps produced by the WGS (2019; 2016) provide spatially 
referenced information on the various characteristics of surficial rocks and deposits within the 
mapped extent. Each map series is comprised of 12 feature classes with the following 
descriptions:  

1. Attitude_points (structural data) – geologic structural attitude measurement points (such 
as strike and dip of foliation). 

2. Contacts – lines representing the boundary between geologic units. Complements the 
geologic_unit_polygon feature class. 

3. Dikes – line representing individual igneous dikes, sills, and descriptive data. 
4. Faults – lines representing geologic faults. 
5. Folds – lines representing fold axes, showing the location and types of folds in bedrock. 
6. Geologic dates – points representing sample sites for geologic age data. 
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7. Geologic_unit_polygons – polygons defining the extent and label of each geologic unit. 
The label is an abbreviation that represents the age, lithology, and name of a geologic 
unit. 

8. Map_index – spatial location of all 1:24,000 or 1:100,000 scale data and their sources. 
9. Map_line – lines representing linear attributes and boundaries for Washington State. 

Specifically, the feature class contains arcs representing geologic units that, due to map 
scale, are too thin to be represented as polygons. It also includes isograds, glacial 
moraines, eskers, lineaments, paleosols, limits of continental glaciations, limits of alpine 
glaciations, landslide scarps, landslide arrows, terraces, scarps, cross section lines, 
streams, intermittent streams, map boundaries, contours, geophysical data collection 
lines, and strand lines (former shorelines). 

10. Map_point – point locations for geologic polygons that are important but are too small to 
show as polygons at the map scale. 

11. Misc_polygons – polygons representing geologic data for features other than geologic 
units, such as alteration zones, dike swarms, outcrops, geomorphic features, mineral 
resources, and descriptive data for areas of Washington State. 

12. Volcanic_vents – point locations for individual volcanic vents. 

Each map series also contains a related unit description table (unit_descriptions) which defines 
each unit and provides age, lithology, and full unit descriptions. 

The map attributes likely to be most useful for the purposes of landslide classification include the 
descriptions of geologic units and extents (geologic_unit_polygons and unit_descriptions) and 
structural data (attitude_points, faults, folds). 
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Figure 3-1. Geologic map coverage within the proposed study area. 1:100,000 geologic mapping is 

shown by the colored regions and is symbolized following the Washington Geological 
Survey (2019) (Data source: DNR). 

3.1.2. Landslide Inventories 

BGC has identified seven unique landslide inventory datasets within the study area of this project. 
Many of these landslide inventories were compiled to accomplish different objectives and, as 
such, are mapped at various scales, record different landslide attributes, and are constructed 
using different methodologies (Table 3-1). Detailed landslide mapping from the WGS is 
considered the primary inventory data source, with other inventories considered supplementary 
inventory data. The following sections describe each landslide inventory. Recommendations for 
the integration of all inventories into a single dataset to be used for DSL classification are provided 
in Section 4.2.1. 
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Table 3-1. Summary of available landslide inventories and the attributes they provide. 

Inventories Citation Type Method 

Provided Landslide Attributes 

Failure 
Depth 

Reported 
Activity 

Cruden and 
Varnes (1996) 
Classification 

Estimate of 
Confidence 

Primary Landslide Inventory 

WGS Lidar-
Based 

Mickelson et al. 
(2017; 2018; 
2019; 2020; 
2022) 

Polygon Lidar x1  x1 x 

Supplementary Landslide Inventories 

WGS 
Compilation 

Washington 
Geological 
Survey (2022c) 

Polygon Map 
Compilation 

   x 

Non-Glacial 
Deep Seated Miller (2017) Polygon Literature 

Synthesis x2 x x  

Glacial Deep 
Seated Miller (2016) Polygon Literature 

Synthesis x2 x x  

Slow Moving 
InSAR Xu et al. (2021) Polygon InSAR  2007-2019   

DNR Recent 
Landslides DNR (2022) Point Public 

Reports 
 2015-2022   

Puget 
Lowland DSL 
Inventory 

Herzig et al. 
(2023) Polygon Lidar x2    

Notes: 
1. SLIP Landslides mapped by the Washington Geological Survey do not contain depth or classification information. 
2. Inventory only includes deep seated landslides, but specific depth not assigned. 

3.1.2.1. Washington Geological Survey Lidar-Based Landslide Inventory 

In 2017, The WGS developed a protocol for lidar-based mapping and characterization of existing 
landslides (Slaughter et al., 2017) closely following the Oregon Department of Geology and 
Mineral Industries landslide mapping protocol described in Special Paper 42 
(Burns & Madin, 2009). Using this protocol, the WGS has created detailed landslide inventories 
for the western portions of Pierce (Mickelson et al., 2017), King (Mickelson et al., 2019), Whatcom 
(Mickelson et al., 2020), and Snohomish (Mickelson et al., 2022a) Counties, and along the 
northern (Washington) side of the Columbia River Gorge (Mickelson et al., 2018) (Figure 3-2). In 
these locations, the lidar-based inventory has superseded the WGS statewide landslide 
compilation (Section 3.1.2.2). 

Following Slaughter et al. (2017), lidar-derived products are used to map landslide polygons and 
assign distinguishing attributes including: 

• Landslide material and movement type, following the classification framework of Cruden 
and Varnes (1996) 

• Qualitative confidence of the presence of a landslide (i.e., high, medium, or low) 
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• Relative age classification of landslide movement (e.g., prehistoric) and year of 
movement, if known 

• Geometry of landslide including the slope angle, headscarp height, failure depth, direction 
of movement, and volume of landslide material. 

In remote portions of the mapping areas, the authors mapped landslide polygons from lidar data 
but only assigned confidence ratings in a process termed Streamlined Landslide Inventory 
Protocol (SLIP; Slaughter et al., 2017). SLIP landslide mapping has fewer attributes compared to 
the more detailed landslide mapping but is faster to complete and generally used in regions with 
lower population density. 

 
Figure 3-2. Lidar-based landslide inventory mapping extents of Mickelson et al. (2017; 2018; 2019; 

2020; 2022). 

3.1.2.2. Washington Geological Survey Compiled Landslide Inventory 

The WGS provides an inventory of landslides compiled from a variety of mapping efforts across 
Washington (WGS, 2022c). Landslides within this compilation are derived from the following 
sources: 

• Landslides mapped within 1:24,000-scale and 1:100,000-scale geologic maps. 
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• Miscellaneous landslide mapping from the WGS, the DNR Forest Practices Division, and 
other federal and private entities.  

• Landslides mapped as part of Watershed Analysis efforts for the Washington Forest 
Practices Board (2016). Landslides within this dataset were mapped using aerial 
photographs, soil and geologic maps, field observations, and lidar, where available. 

• Large, reconnaissance-scale mapping of landslides following significant precipitation 
events. Landslides within this dataset are typically mapped using small-aircraft 
surveillance, aerial photography, satellite imagery, or lidar identification, with minimal field 
verification. 

• A study of near-shore landforms along the Salish Sea that have characteristics of 
deep-seated landslides but lack the thorough investigation necessary to classify these 
landforms as landslides. 

Because of the variety of datasets and methodologies contributing to this compilation, the detail 
and quality of assigned landslide attributes are inconsistent across the dataset. Most notably, the 
compilation does not include a consistent attribution of landslide depth or morphology.  

3.1.2.3. Glacial and Bedrock Deep-Seated Landslide Inventories 

In the Fall of 2015, UPSAG and CMER were directed by the Washington Forest Practices Board 
and Timber Fish and Wildlife Policy Committee to develop a scope of work for a focused literature 
review and synthesis of research assessing the effect of forest practices on groundwater recharge 
areas and deep-seated landslides in glacial materials. The resulting review and synthesis 
(Miller, 2016) raised additional questions regarding forest practices effects on the groundwater 
recharge, reactivation, and runout potential of non-glacial deep-seated landslides. As such, the 
literature review and synthesis were expanded by Miller (2017) to focus on non-glacial 
deep-seated landslides. Both works (Miller, 2016; 2017) included a geospatial inventory of 
deep-seated landslide polygons with attributes indicating the activity level (i.e., relict, dormant, 
recent), representative material from which the landslide is derived, and the landslide material 
and movement type following the classification framework of Cruden and Varnes (1996). 

3.1.2.4. InSAR-Identified Slow Moving Landslides 

Xu et al. (2021) evaluated synthetic aperture radar (SAR) satellite imagery to identify slow-moving 
landslides across the continental U.S. western coastal states of California, Oregon, and 
Washington. Landslide movement was detected by evaluating interferograms derived from ALOS 
PALSAR (Advanced Land Observing Satellite; Phased Array type L-band Synthetic Aperture 
Radar) images between 2007 and 2011, and ALOS-2 PALSAR-2 images between 2015 and 
2019. Within this dataset, each polygon represents the largest active area of the landslide 
captured by either ALOS PALSAR or ALOS-2 PALSAR-2. Xu et al. (2021) only reported 
landslides where the line-of-sight (LoS) displacements exceeded 5 mm over the data range 
processed. Therefore, the results likely do not capture the displacements for very slow moving 
landslides in the region. Landslide polygon attributes only include which time period showed 
landslide movement (i.e., 2007-2011, 2015-2019, or both); additional details on the amount or 
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rate of movement are not provided. No displacement time series data are provided with this 
inventory.  

3.1.2.5. Washington Department of Natural Resources Recently Reported Landslides 

Beginning in 2015, DNR has collected and continually reported point observations of landslide 
occurrence statewide (DNR, 2022). Point observations only record the date of the observation 
and provide a brief description; information on the landslide characteristics or extent is limited. 
Additionally, the accuracy of the point locations is likely not sufficient for detailed analysis. As 
such, the information provided by this dataset likely would not contribute to the inventory of 
deep-seated landslides but may help to confirm the activity level of a landslide already included 
in the inventory.  

3.1.2.6. Puget Lowland Deep-Seated Landslide Inventory 

In 2023, Herzig et al. published a new DSL inventory of 1,065 landslides in the Puget Lowlands. 
The inventory is entirely inside King County and was based on detailed mapping on high 
resolution lidar (1-meter pixel size) combined with field observations. They classify all landslides 
in the inventory as deep-seated, with deep-seated landslides defined as those with a slip plane 
located beneath the rooting depth of trees. They utilized the WGS lidar based inventory for King 
County (Mickelson et al., 2019) as a starting basis and performed more detailed mapping 
including field verification visits. This appears to be a quite high-quality inventory in terms of spatial 
accuracy, though the attributes provided are mostly geometrical (e.g., length, height to length 
ratio).  

3.1.3. Forest Operations Data 

Geospatial information on past forest operations is available through records of forest permit 
applications and orphaned or abandoned forestry roads provided by DNR Forest Practices 
Division (2022). Extents of previous and current forest applications are provided as polygons while 
forestry road records are provided as polyline segments. Both datasets provide statewide 
coverage. These records, corroborated by remote imagery analysis to verify timing of forest 
practices activities, may be compared with DSL landslide inventories to analyze the spatial and 
temporal relationships between forestry operations and DSL activity.  

3.1.4. Topographic Position  

The position of a landslide in the context of hillslopes, ridges, and valleys can have important 
implications regarding the sensitivity of the landslide. For example, landslides that initiate in upper 
hillslopes and deposit material on valley floors may be more susceptible to river flows and active 
undercutting than landslides that do not travel all the way to the valley floor. A metric for assessing 
landscape position in this manner is known as the Topographic Position Index (TPI), developed 
by Weiss (2001).  
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TPI classifies the landscape into valleys, ridges, flat sections, and various portions of the hillslopes 
(e.g., upper, middle, lower). As topography is a fractal feature, TPI is thus a scale-dependent 
method that can be used to identify large- or small-scale topographic features depending on 
variables selected when computing the TPI. For example, Figure 3-3 identifies large features 
(e.g., major river valleys, major ridges) in western Washington. During study execution, scale 
parameters for TPI should be explored to determine scales that are most relevant to the 
inventoried DSLs. Multiple TPI datasets may be warranted to capture landscape features of 
different scales and assist in the landslide class definitions.  

 
Figure 3-3. Example Topographic Position Index map for western Whatcom County for identifying 

range-scale features. Landslide deposits of Mickelson et al. (2020) are shown for 
reference (Data source: BGC, USGS). 

3.1.5. Land Use/Land Cover 

Land use/land cover (LULC) datasets provide spatially referenced categorical descriptors for each 
pixel of a satellite image. Common LULC classes include forests, agriculture, or built-up areas 
(e.g., Figure 3-4). As these data are developed from satellite imagery, they are thereby 
time-referenced as well, meaning that it is reasonable not only to identify present LULC 
categories, but also to track change in LULC through time. These types of data could be compared 



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 
Study Design Project No.: 2365001 

Document 11. WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 19 

BGC ENGINEERING USA INC. 

with landslide inventories to evaluate anthropogenic or natural influence on DSL activity. 
Worldwide, time-enabled, 10-m resolution LULC data derived from the processing of Sentinel-2 
satellite imagery are available through Google Dynamic World (Brown et al., 2022). This service 
provides LULC data from June 2015 to present at a frequency of an updated classification every 
~2-5 days.  

 
Figure 3-4. Example of LULC in relation to mapped DSLs in western Whatcom County 

(Mickelson et al., 2020). LULC data is derived from Google Dynamic World 
(Brown et al., 2022) and represents conditions on June 1, 2021.  

3.1.6. Soil Maps 

The United States Department of Agriculture (USDA) Natural Resources Conservation Service 
provides spatial and tabular soil information for most of the United States, including western 
Washington (USDA, 2022). Soil information from these maps such as the soil type, typical depth 
of the soil profile, drainage class, and water table depth may be used for landslide sensitivity 
assessment particularly in relation to hydrologic properties (see Sections 5.2.5 and 5.4). 

3.1.7. Lidar Data 

3.1.7.1. Lidar in Washington State 

Lidar collection started in Washington State in 1996 and spurred the establishment of the Puget 
Sound Lidar Consortium – the first lidar management organization in Washington 
(Gleason & Markert, 2020). In 2015, Revised Code of Washington 43.92.025 was incorporated to 
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State Law, requiring the WGS to conduct lidar based mapping of seismic, landslide, and tsunami 
hazards in Washington (Gleason, 2016). This law initiated the development of a state-wide lidar 
collection, analysis, and dissemination program under the guidance of the Washington Office of 
the Chief Information Officer and the WGS. Using lidar to identify landslides is a well-established 
technique in the landslide community (e.g., Burns & Madin, 2009; Jaboyedoff et al., 2012) and 
lidar data have been a key underpinning for landslide inventory mapping by the Washington 
Geological Survey (Mickelson et al., 2017, 2019, 2020, 2022c) and others in the region 
(e.g., LaHusen et al., 2016). 

Lidar is currently available from acquisition campaigns spanning between 2002-2022 in various 
portions of Washington. Data quality has generally increased with time and has been consistent 
with the state of the practice at the time of collection due to close collaboration between 
Washington agencies and project collaborators such as the U.S. Geological Survey. Current data 
are collected at Quality Level 1 (QL1) specifications with a minimum aggregate return density of 
8 pulses per square meter (ppsm). Additionally, data are processed to digital elevation models 
(DEM) with a cell size of 0.5 meters. Return classification is consistent with American Society of 
Photogrammetry and Remote Sensing standard classifications (ASPRS, 2019). Based on 
preliminary, proof-of-concept, lidar analysis, lidar collected at least as long ago as 2006 is suitable 
for lidar change analytics (Section 5.2.3). 

3.1.7.2. Lidar Coverage in the Study Area 

In 2022, lidar is generally available over all portions of the study area where landslide mapping 
has been conducted. Multi-epoch data are also available, with between one and 10 epochs 
available for any given location in the study area. Figure 3-5 illustrates individual blocks of lidar 
data acquired by Washington State or partner agencies and in the Washington State Lidar 
database. Most frequent coverage is generally available along major river valleys in the study 
area such as the Nooksack (Whatcom Co.), North Fork Stillaguamish (Snohomish Co.), 
Snoqualmie and Cedar (King Co.), and Puyallup rivers (Pierce Co.). However, for virtually all 
landslides in the WGS Landslide Database (Section 3.1.2), at least two epochs of lidar are 
available. 
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Figure 3-5. Lidar coverage within the proposed study area. Warmer colors represent more epochs 

of collocated lidar (Data source: DNR). 

3.1.8. Synthetic Aperture Radar (SAR) Data 

3.1.8.1. InSAR Coverage Considerations 

Since 1991, a series of satellites with synthetic aperture radar (SAR) sensors, launched by several 
international space agencies, have collected coverages of data that can be utilized to support 
monitoring of ground deformation (Figure 3-6). These SAR data, when processed utilizing a 
technique called SAR Interferometry (InSAR), can in many cases map ground displacements as 
small as millimeters per year. While the ability to map this level of ground deformation is 
dependent on many factors related to the sensing parameters, the processing techniques, error 
introduced by atmosphere and topography, impacts of ground cover/vegetation and attributes of 
the ground movement itself, these data theoretically can provide a time history of deformation 
going back 30 years. 

Some of the key requirements to support building long term time histories of ground displacement 
using InSAR is that SAR data had to have been systematically collected and archived and must 
be accessible to download and process. At this time the only systematically global coverage of 
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freely available and easily accessible SAR data that is still operational has been obtained via the 
European Space Agency’s (ESA) Sentinel 1A and 1B satellites, which were launched in 2014 and 
2016, respectively. Historical data obtained by ESA’s ERS 1 and 2 (1991 to 2011), and Envisat-1 
(2002 to 2012) are also freely available and accessible through ESA. Radarsat-1 (1996-2013) 
and ALOS-1 (2004-2011) are also freely available but did not acquire standard coverages and 
therefore data are not always suitable for building an InSAR time series. There are also other 
satellites with SAR sensors that were launched by international space agencies where areas have 
been imaged based on government priorities or tasked on an on-demand basis for commercial 
purchase. With these satellites there are only existing stacks of data present if acquired for the 
above purposes and therefore data is not consistently available globally.
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Figure 3-6. Overview of the historic, current, and upcoming SAR satellites launched by various international space agencies. A pointed 

right-end on the bars shown indicates ongoing data collection, whereas a square end indicates a cessation in satellite 
acquisition.
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The SAR sensors operate in different wavelengths and acquire data in different orbital 
configurations and, potentially, imaging modes. These configurations have implications on the 
ability to quantify ground motion. The high-level considerations impacting the overall suitability of 
these SAR data to support mapping regional ground deformation will be discussed in more detail 
in Section 5.2.4. 

3.1.8.2. SAR Data Coverage for Study Areas 

The western coast of the United States is exceptionally data rich in terms of the availability of 
historical archives of SAR data coverages. These coverages include both C-Band and L-Band 
SAR data and often provide both ascending and descending look directions. When used together, 
these datasets provide opportunities to maximize spatial coverage and the ability to quantify 
ground displacement in terms of displacement direction and rates of movement. When discussing 
satellite coverages, each acquisition of SAR data is referred to as an individual “scene” while 
overlapping, repeatedly collected scenes covering the same area over different time periods is 
referred to as a “stack”. Typically, when assessing the feasibility of SAR data to generate time 
series data, discussion focuses on whether there are enough SAR scenes available for that 
analysis, which is referred to as the “stack depth”. 

The following provides an overview of the spatial and temporal attributes of the available C-Band 
and L-Band coverages over the specific counties. X-Band coverages are not currently considered 
as they are broadly not considered to be suitable to quantify ground movement in vegetated 
terrain. The details in relation to the available data coverages (footprints) and acquisitions are 
included in Appendix A and summarized in the following sections. 

3.1.8.2.1 C-Band (1992 to Present) 

3.1.8.2.1.1 ERS-1 and 2 (1991 to 2011) 

Launched by the European Space Agency (ESA) the ERS program consisted of two satellites, 
ERS-1 (launched in 1991) and ERS-2 (launched in 1995). These satellites had identical sensors 
and shared the same orbit, making the data suitable for interferometric processing. A significant 
amount of ascending and descending data, captured between 1992 and 2011, are available over 
the study area. Although this coverage is not temporally consistent, different footprints can be 
chosen to optimize the InSAR processing results. An overview of the spatial coverages of the 
ERS-1 and ERS-2 data in relation to the study area is provided in Appendix A, with the temporal 
properties of these coverages provided in Table 3-2. 
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Table 3-2. Overview of temporal characteristics of existing ERS-1 and ERS-2 coverages. 

County Ascending Descending 

Whatcom 
Complete coverage of study areas with 
sporadic acquisitions obtained between 
early 1993 to late 2011. Maximum stack 
depths of up to 25 scenes. 

Complete coverage of study area with 
relatively consistent acquisitions (gaps in 
2003-2005). Deep stacks available (>30 
scenes). 

Snohomish 

King 

Pierce 

3.1.8.2.1.2 Radarsat-1 (1996 to 2013) 

Launched in late 1995 by the Canadian Space Agency (CSA), Radarsat-1 (R1) was a hybrid 
sovereign/commercial SAR satellite that acquired data in areas of strategic need for the Canadian 
Government and allowed for the tasking of on-demand images commercially via MacDonald, 
Dettwiler and Associates (MDA). Based on this tasking arrangement, no standard coverages were 
typically available in areas outside of Canada. However, the review of the R1 archives 
encountered relatively good spatial and temporal coverage over portions of the study areas. An 
overview of the spatial coverages of the R1 data in relation to the study area is provided in 
Appendix A, with the temporal properties of these coverages provided in Table 3-3. 

In April 2019, the R1 archives were made freely available by the Canadian Space Agency and 
therefore there is no cost associated with obtaining the SAR data for processing. 

Table 3-3. Overview of temporal characteristics of existing Radarsat-1 coverages. 

County Ascending Descending 

Whatcom 

Existing coverages for southern half of 
county with temporally dense image 
stacks available between late 2004 to 
early 2008. 

Large portions of area covered by various 
footprints. Image stacks are typically less 
than 10 images and sporadically collected. 

Snohomish 
Partial coverage with various footprints 
with deep image stacks between early 
2005 to early 2008. 

Partial coverages by various footprints with 
deep image stacks between early 1999 and 
early 2008 

King Consistent coverage for large portions of 
the study area with consistent acquisitions 
between early 1999 and early 2008. 

Consistent coverage for large portions of 
study area with consistent acquisitions 
between early 1999 and early 2008. Pierce 

When reviewing the temporal coverage, it is apparent that there are areas where more frequent 
acquisitions have been targeted and therefore the utility of this data will vary based on the targeted 
areas prescribed in this design. 

3.1.8.2.1.3 Radarsat-2 (2007 to Present) 

The second of Canada’s Radarsat satellites, Radarsat-2 (R2) was launched in late 2005 with a 
similar acquisition model as R1. Therefore, SAR data was only collected over areas of strategic 
importance for the Canadian government, or areas where acquisitions were tasked for 
commercial purposes. When reviewing the R2 archives, only sporadic coverage primarily focused 
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over the western portion of Pierce County has been collected. If this area is one of the areas 
chosen for more detailed study, then the suitability of this data for InSAR processing would be 
evaluated with consideration that this data is currently only available on commercial basis through 
MDA. 

3.1.8.2.1.4 Sentinel-1A and 1B (2014 to Present) 

ESA’s Sentinel-1A and 1B missions provided the first systematic global acquisition of C-Band 
SAR data which is easily accessible and freely available. Similar to the ERS program, Sentinel 
1A and 1B provided identical imaging characteristics and were launched on the same orbital path. 

An overview of the spatial coverages of the Sentinel-1 A and B data in relation to the study area 
is provided in Appendix A, with the temporal properties of these coverages provided in Table 3-4. 

Table 3-4. Overview of temporal characteristics of existing Sentinel-1 coverages. 

County Ascending Descending 

Whatcom 
Complete coverage of all areas with 
consistent 12-day temporal revisit 
between early 2017 and late 2021. Deep 
stacks of data (>30 scenes) 

Complete coverage of all areas with 
consistent 12-day temporal revisit between 
late 2017 and late 2021. Deep stacks of 
data (>30 scenes) 

Snohomish 

King 

Pierce 

3.1.8.2.2 L-Band 

3.1.8.2.2.1 ALOS-1 (2006 to 2011) 

The Advanced Land Observing Satellite (ALOS) was an earth-imaging satellite launched by the 
Japanese Space Agency (JAXA) in January 2006 and collected imagery until May 2011. The 
ALOS satellite featured 3 instruments, including the Phased Array-type L-band SAR (PALSAR) 
instrument. While the ALOS satellite featured a systematic global observation strategy, the 
acquisition plans were targeted for systematic coverage by all 3 instruments. The PALSAR 
instrument acquisition strategy featured routine observations for 4 instrument modes, all of which 
are not interferometrically compatible. Nevertheless, the PALSAR acquisition strategy allowed for 
the collection of ScanSAR (30 m resolution) stacks of data suitable for InSAR processing for most 
areas of the globe. For the areas of interest, there are relatively good coverages of ALOS-1 data 
(shown in Appendix A) that are outlined below on Table 3-5. 
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Table 3-5. Overview of temporal characteristics of existing ALOS-1 coverages. 

County Ascending Descending 

Whatcom 
Complete ScanSAR coverage 2007-
early 2011 (some gaps in 2008-2009) 
with some stacks over 20 scenes deep. 

Majority of area covered with ScanSAR 
data but stack depths range from 3 to 6 
scenes and are likely not suitable for 
building displacement time-series. 

Snohomish Complete ScanSAR spatial coverage 
with intermittent coverage between early 
2007 and 2011. Stack depths range 
between 9 to 12 scenes. 

Majority of area covered with ScanSAR 
data but stack depths limited to a maximum 
of 7 scenes. 

King 

Pierce 

In September 2015, the ALOS-1 archived data were made freely available for download and are 
accessible through JAXA and various distribution centers. 

3.1.8.2.2.2 ALOS-2 (2014 to Present) 

JAXA’s second satellite of the ALOS mission, ALOS-2, was launched in May 2014, with priority 
coverages focused on the Japanese government requirements and commercial acquisitions 
available on a fee-for-tasking basis. With this model, consistent global coverages were not 
obtained, however, there were relatively consistent acquisitions of coarser ScanSAR data 
collected over the study areas, as shown in Appendix A and described in Table 3-6. 

Table 3-6. Overview of temporal characteristics of existing ALOS-2 coverages. 

County Ascending Descending 

Whatcom 
Regularly spaced coverages between 
late 2014 to 2022 with stack depth of 
up to 12 scenes. 

Regularly spaced coverages between late 
2014 to 2022 with stack depths of up to 12 
scenes. Image stacks of lower resolution 
ScanSAR data up to 64 scenes deep. 

Snohomish 

King 

Pierce 

The archived images over the study areas are available for commercial purchase through JAXA’s 
reseller, PASCO (https://alos-pasco.com/en/offer/). 

3.1.8.3. InSAR Feasibility for Study Area 

The design of the data acquisition and processing strategy will maximize the potential for 
accurately measuring true ground displacements. As discussed previously, the key 
considerations include the spatial coverage of data, the number of scenes that can be utilized for 
InSAR processing (stack maturity), and the wavelength of the data. Table 3-7 provides a 
preliminary assessment of the suitability of the data presented in Section 3.1.7.2 and Appendix A 
to provide high fidelity InSAR timeseries data for each of the counties in question. The data are 
rated as high (H), Medium (M) and Low (L) suitability based on the following criteria: 
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Likelihood of Success: 
• High (Green): Complete spatial coverage of the study area and deep stacks of data 

(>15 scenes of L-Band data or >30 scenes of C-Band data) that likely can be utilized to 
generate near-continuous displacement time series 

• Moderate (Yellow): Study areas are mostly/completely covered with some stacks that 
have at least 10 scenes of L-Band data or 20 scenes of C-Band data that could be utilized 
to generate displacement time series 

• Low (Red): Either there is poor spatial coverage, or the stack depths are insufficient to 
generate useful displacement time series. 

Even though areas are marked as having a High to Moderate likelihood of success based on 
spatial and temporal data coverages, there are other reasons why data may not be suitable for 
use, such as large orbital baselines, which may reduce the stack depth. Furthermore, C-band 
data will result in lower measurement point densities in the presence of vegetation. This being 
considered, any area marked as High to Moderate likelihood of success should be considered for 
acquisition and processing of data, especially for freely available data sources such as ALOS-1 
ScanSAR, ERS-1 and 2, Radarsat-1 and Sentinel-1. For ALOS-2 ScanSAR data, which is 
commercially available, it is recommended that only areas marked as High likelihood should be 
considered for acquisition and processing. 

Table 3-7. Summary of the Feasibility (High, Medium, Low) of Utilizing Existing SAR archived 
data to generate time series InSAR. 

Band Coverage Date Range 
Whatcom Snohomish King Pierce 

Asc Desc Asc Desc Asc Desc Asc Desc 

L 
ALOS-1 2006 - 2011 H L M L M L M L 

ALOS-2 2014 - 2022 M H M H M M M H 

C 

ERS-1/2 1992 - 2011 M H M H M H M H 

Radarsat-1 1996 - 2008 M M M M M H M H 

Radarsat-2 2012 - 2022 L L L L L L L L 

Sentinel-1 2017 - 2022 H H H H H H H H 

Notes: 
1. Asc: Ascending. 
2. Desc: Descending. 

3.2. Site-Specific Studies 

Site-specific studies of DSLs within the project area may provide additional details on the landslide 
properties beyond what is included within existing landslide inventories. These studies are 
available as published papers, academic theses, or geotechnical reports (either from government 
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agencies or consultants) and may contain valuable information from instrumentation monitoring 
(e.g., slope inclinometers, extensometers, GPS, survey monuments). Comparison of a subset of 
landslide classes and clusters (Section 5.2.5) with site specific studies, where available, may 
provide verification of the DSL classification schema proposed within this document. In our 
experience, long-duration site-specific instrumentation data are relatively rare, with few large 
landslides monitored with a regular temporal frequency. Where available, these data will also be 
site-specific and it will be important to not apply too great of an emphasis on monitoring data from 
one landslide. Because of these issues, site-specific data will be supplementary to the overall 
study. They will be very useful where available, and if sufficient data exist, using them to correlate 
remote-sensing derived findings will be a value-add to the program. However, the overall results 
of the study should not hinge on instrumentation data availability.  

Miller (2016; 2017) includes references to geotechnical reports or published works in his 
inventories of glacial and non-glacial DSLs and, as such, may serve as a starting point for seeking 
site-specific information. Because these works only include active DSLs identified before 2017, 
other means of identifying site specific studies should be utilized for DSLs which contain more 
recent information.  

Additionally, where available, forest practice applications (FPA) should be consulted for further 
evidence of activity state or field-based observations that can be useful in the classification. These 
reports may contain evidence of landslide activation that are missed via remote-sensing methods 
alone. Further, they may contain precursors to landslide activation such as ponding of water or 
changes in surface water drainage patterns. 
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4.0 DATA CONSIDERATIONS 

4.1. Dataset Size and Completeness 

Historically, studies aiming to evaluate factors influencing DSL activity were conducted on a single 
to a few DSLs that are studies in detail at a site-specific scale. This is because these studies were 
generally heavily field-oriented and often included subsurface investigations such as drilling or 
monitoring (e.g., soil moisture probes, piezometers, inclinometers). While useful, these methods 
are not applicable at a regional scale and can quickly become prohibitively expensive to conduct 
on a large population of landslides. It is not feasible to undertake detailed field investigations of 
the over 9,000 DSLs known in Washington, for example. Although this is true, these detailed 
studies are important to support extrapolation of the site-specific models developed across similar 
landslides within associated landslide groupings (classes or clusters). 

Satellite-derived remote sensing data is an increasingly viable alternative to study large 
populations of landslides. The spatial continuity and increasingly dense temporal coverage of 
these data give the alternative a great advantage of being able to interrogate large populations of 
landslides over the last 2-3 decades (as far back as 1992 depending on the availability of archived 
data), resulting in the ability to remotely capture many “landslide-years” of observations. For 
example, recent works by Xu et al. (2021) and Handwerger et al. (2022) use InSAR to make 
observations on the activity state of 617 and 38 landslides over a period of 13 and 6 years, 
respectively. These works resulted, therefore, in several thousand landslide-years of observations 
regarding the activity of DSLs in space and time.  

This current study design approach supports the collection of thousands to tens of thousands of 
landslide-years of observations to be used in the evaluation of landslide sensitivity to forestry 
activities. This may allow the further subdivision of the overall population into classes and clusters 
of landslides, following the expectation that in different regions or at different times, 
sub-populations of landslides may respond differently than others. This study will likely not be 
successful if only landslides that can be investigated with field methods are used in the analyses 
contained in this design. Furthermore, the spatial definition of key areas from the remotely sensed 
data will allow for targeted site-specific studies and/or monitoring to support subsequent program 
phases. 

Quality control of all data sources will be critical throughout the study execution. Errors could be 
propagated and, thus, should be considered wherever possible. Errors may be categorical 
(e.g., landslide type, mapped lithology) or numerical (e.g., LCD or InSAR derived velocities) and 
may come from original data sources or from those generated during the study execution. 
Throughout the study design, project members should routinely be checking for data accuracy. 
Part of this program includes manual analyst review of landslide polygons, specifically during the 
LCD and InSAR characterization work. This is an ideal time in the program to assess the accuracy 
of other attribute data associated with landslide polygons. Additionally, project check-ins with 
UPSAG and associated agencies and data transmittals should be shared to facilitate gathering 
others’ perspectives on classifications and methods.  
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4.2. Organization and Structure 

Since the modern computational revolution of the 1990s to present, dataset size and complexity 
has increased exponentially. Extracting meaningful information from these “big data” can be 
exceedingly difficult without appropriate planning. It also can pay dividends to plan for future 
unknowns when designing a large-scale study such as this one.  

This section describes some considerations in designing the data architecture for this program. 
The objective of this planning is to adequately prepare for the known program objectives but also 
provide a flexible framework to account for future potential uses of these data. These future 
potential uses could include application of the program to new geographic areas (e.g., additional 
areas inside or outside Washington), new data sources, and perhaps most importantly, new 
analytical techniques. 

4.2.1. Landslide Inventory Integration Procedure 

For this study design, we suggest integrating the landslide inventories described above into a 
single dataset that can be used to classify landslide properties and assign velocity classes. The 
most relevant attributes readily provided by available inventories for landslide classification 
include the depth of landslide movement, representative source material, movement type 
classification (Cruden & Varnes, 1996), activity level, and confidence in the landslide 
interpretation.  

The purpose of integrating inventories is not to suggest what areas of the landscape are 
experiencing landslides in modern day (e.g., are “active”). Instead, the effort aims to identify the 
maximum likely extent of present-day and geologically recent (i.e., since the last glacial period) 
landslides, and thus, to conservatively estimate areas of the landscape that may be sensitive to 
external perturbations such as forestry disturbances. This base layer of possible DSL locations 
will serve as the basis for where to perform further analysis. 

Given the variability in scale, quality, and coverage of the available landslide inventories, careful 
consideration should be paid to the landslide attributes and the methodology of the original 
source. In many locations, landslide polygons from different inventories may overlap and provide 
conflicting information on landslide attributes. Recognizing that virtually every landslide inventory 
is developed with slightly different methodologies, it can be useful to provide a quality score to 
each inventory when performing an integration of these different datasets. A quality score can 
capture different components of the mapping methodology. For example, was the inventory 
generated through mapping on high resolution lidar or only on coarse resolution topographic data 
(e.g., SRTM)? Was the inventory field verified or is it primarily composed of media reports? A 
quality ranking, thus, provides a basis for deciding which inventory takes precedent when overlaps 
occur or when conflicting information is provided by the different inventories. Further, it can 
provide the basis to omit data entirely or to warrant further confirmation of landslides from a given 
inventory prior to analysis. Mirus et al. (2020) provide a framework for this quality metric and we 
would encourage a similar methodology be used in this study. In Mirus et al. (2020), the authors 
use a ranking score of 1-8 (Fibonacchi sequence, i.e., 1, 2, 3, 5, 8) according to factors such as 
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the presence (or lack thereof) of field observations, the resolution of topography data used for 
mapping, the use of aerial imagery, the reliance on media reports, and more). The WGS inventory 
provides a separate confidence level attribute for each polygon (low, moderate, or high). This 
indicates how confident the mapping geologist was that the identified feature was a landslide, 
considering the clarity of the landslide headscarp, flanks, toe/deposit, and morphology (Slaughter 
et al., 2017). This WGS ranking may be used in conjunction with the Mirus et al. (2020) ranking 
system. One suggestion is to carry the Mirus et al. (2020) assigned score of 8 through to only 
“high” confidence WGS polygons. For “moderate” WGS polygons, perhaps a score of 5 is 
assigned, and for “low” confidence WGS polygons, perhaps a score of 3. Careful consideration 
here should attempt to carry all confidence metrics through to the final compiled inventory. 

We suggest that the detailed, lidar-based inventory provided by the WGS (Mickelson et al., 2017; 
2018; 2019; 2020; 2022) be the primary contributor to the overall landslide inventory because it 
is mapped using lidar at a scale appropriate to this work and contains relevant information on 
landslide depth, materials, and movement type. The WGS also field verifies a percentage of their 
polygons and uses aerial imagery where available. Mirus et al. (2020) ranks the WGS lidar based 
inventories as highest quality (score = 8). That said, more recent work by Herzig et al. (2023) 
overlaps areas also mapped by the WGS in the Puget Lowlands and in many cases, the Herzig 
et al. data overlap with WGS mapping (see Figure 4-1). We bring this up here to illustrate that 
even amongst high quality inventories, sometimes decisions will need to be made on an inventory 
by inventory basis and a simple quality score is only a guiding metric and does not provide a 
complete workflow. These quality ratings may be used by DNR in further assessments, whether 
they be office- or field-based. For example, DNR may opt to perform a more rigorous review of 
low-confidence features and a less rigorous review of high-confidence features. 

 
Figure 4-1. Comparison of two recent high quality landslide inventories from Herzig et al. (2023) 

and Mickelson et al. (2019) in King County, WA. Slopeshade base derived from DNR, 
King County Lidar 2021.  
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Other inventories may be used to supplement the WGS lidar-based inventory, depending on their 
methodologies and attributes provided. A suggested procedure for how to integrate the landslide 
inventories is shown in Figure 4-2. Comments on how the supplemental inventories may 
contribute relevant landslide information is described below: 

1. WGS Compiled Landslide Inventory (WGS, 2022c) – Because the WGS lidar-based 
inventory supersedes the WGS compiled inventory, the only landslides within this 
compilation that should be included within this study are those that fall outside the mapping 
areas of Mickelson et al. (2017; 2018; 2019; 2020; 2022). The attributes within the WGS 
compilation are highly variable aside from the confidence in the landslide existence. 
Therefore, the subject matter expert (SME) performing the proposed study will need to 
check that the polygon reasonably delineates a deep-seated landslide, estimate the 
landslide depth, representative source material, Cruden and Varnes (1996) classification, 
and activity level based on their professional judgement using contextual information such 
as geometrical relationships, available lidar datasets, geologic maps, or additional 
landslide inventories.  

2. Glacial and Non-Glacial DSL Inventories (Miller, 2016, 2017) – These datasets provide 
high-quality information on DSL source materials, movement type, and activity level but 
are limited in their extent and spatial coverage because they are primarily derived from 
landslides reported in several external data sources. Where landslides within this 
compilation overlap with the WGS lidar-based landslides, if appropriate, polygons may be 
merged to conservatively represent the deep-seated landslide extent. 

3. InSAR Derived Slow Moving Landslides (Xu et al., 2021) – These datasets provide 
information on the timing of landslide movement that may be incorporated with other 
existing inventories. Our preliminary review shows that all slow-moving landslides 
identified through InSAR (Xu et al., 2021) overlap with DSLs mapped by the WGS using 
lidar-based methods (Mickelson et al., 2017; 2018; 2019; 2020; 2022) within the WGS 
mapping extent. Similar to overlapping glacial and bedrock DSL inventories discussed 
above, we suggest that InSAR-identified landslides that overlap landslides from other 
inventories be merged to conservatively represent the potential area of landslide 
sensitivity. Landslide activity information provided by the InSAR datasets should be 
maintained within the database. 

4. DNR Recent Landslides (DNR, 2022) – The DNR recent landslide database would likely 
not contribute to the inventory compilation as it only provides point data of landslide 
observations and accuracy of the point locations are questionable due to the sourcing of 
these data from a variety of reporting agencies including media networks. This data, 
however, may be useful for determining the activity history of landslide polygons that 
intersect the recent landslide points features. Our preliminary review shows that 29 DSLs 
within the WGS lidar-based inventory intersect point observations of recent landslide 
activity. When reviewing the various landslide activity data obtained from LCD and InSAR 
these data points will be considered to gather additional insights into the timing of sudden 
landslide activity changes at the point locations. 

Puget Lowlands Landslide Study (Herzig et al., 2023) – Researchers from Washington, 
Oregon, and California produced an inventory of 1,065 deep seated landslides in the 
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Puget Lowlands of western King County, WA. In many instances, the inventory overlaps 
with the WGS inventory for King County (Mickelson et al., 2019). The mapping was 
performed on 2021 vintage lidar (1-meter pixel size) and the resulting inventory includes 
several geometric attributes (e.g., height, length). The inventory does not include any field 
observations, though the authors did field verify some landslides. 
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Figure 4-2. Suggested approach to integrating various landslide inventories and additional 

geospatial datasets.  
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4.2.2. Addition of Time-Stamped Attribution 

In addition to integrating already cataloged data, the present study will include time-enabled 
tabular attribution of landslide velocities and potential LULC data. These data should be stored in 
tables containing at least the following attribute data: 

• Landslide unique identifier number 
• Date 
• Annualized displacement (i.e., velocity) or LULC classification (e.g., forest) 
• Method of estimating the attribute (e.g., lidar change detection, InSAR, instrumentation). 

The current schema of the WGS detailed landslide inventory does not account for this addition, 
however, with careful consideration, these data could be appended in a fashion suitable for future 
analysis. A simple solution is a table of date and inferred velocity or LULC classification that will 
be joined to the main database by use of a landslide unique identifier (e.g., object ID or landslide 
ID). A common field such as the landslide ID will ensure that many time-stamped data types and 
formats could be tied to individual landslides. Additional time-enabled attributes could be 
appended this way by developing additional joined tables.  

4.2.3. Flexibility for Future Modeling Efforts 

This effort and future projects in the DSL Strategy will require robust statistical modeling 
(e.g., logistic regression, principal component analysis, machine learning, and other exploratory 
statistical techniques). To support this, all components of data storage and architecture should be 
designed in a way that will support future modeling efforts. This means structuring data in a 
manner suitable for querying and quantification wherever possible and minimizing qualitative data 
such as free text fields and one-off considerations. It is imperative that data assimilation and 
compilation is structured from the beginning of a multi-year study like this one with such an end 
goal in mind. 

Focusing on integrating a single source of landslide attribute information with geolocation 
information and time-enabled tabular datasets will increase the utility of the data organization and 
assimilation tasks discussed in this study. Additionally, this will increase the flexibility of the 
dataset for future research and modeling efforts that may be part of the larger Strategy. 
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5.0 RECOMMENDED METHODOLOGY 

This section describes the methodology for further study refinement and execution of the proof-
of-concept study. A summary of the steps included is shown in Figure 5-1 below and discussed 
in more detail in subsequent sections.  

 
Figure 5-1. Study execution summary. 

5.1. Selection of Area for Proof-of-Concept Execution (Pilot Study) 

A significant part of this initial study focuses on the identification of data sources and their spatial 
and temporal coverage of the study area. Alternative 2 from the Scoping document included four 
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counties in western Washington. These counties coincide with the areas of detailed landslide 
inventory mapping from the WGS (Mickelson et al., 2017, 2019, 2020). With that in mind, this 
section discusses additional considerations in data coverage which may be useful to further define 
a targeted study area for this initial proof-of-concept. If linkages between forestry activities and 
DSL activity levels are identified, the developed workflows may be calibrated and tested to 
evaluate additional areas beyond this initial study area.  

The initial study area should include an overlap of high-quality data sources where it is expected 
that statistically robust relationships can be identified (Section 4.0). This design has considered 
the overall spatial and temporal coverage of the following key data sets: 

• Landslide inventory data: Focusing on the completeness of mapping utilizing modern 
techniques and high quality lidar base maps (Section 3.1.2.3) and the temporal resolution 
and value of mapping (e.g., InSAR derived slow moving landslides, Section 3.1.2.4). 

• Lidar data: Focusing on the largest number of epochs of data coverage, as well as 
optimizing where higher resolution point cloud data is available to support maximizing the 
resolution of detectable displacements (Section 3.1.5). 

• SAR data: Assessing where a combination of multi-look and multi-frequency data sets are 
available that provide spatial coverage of key landslide populations but also allow for 
longer term InSAR time series to be generated for a select subset of sites. Focus on 
L-band data for resolving displacements in vegetated environment of western Washington 
(Section 3.1.6). 

• Types of deep-seated landslides: Focus on a representative process type (e.g., slide, flow) 
and geomorphic position (e.g., valley, mid slope, upper slope) for the broader population 
of landslides in western Washington.  

• Other vector data such as geological mapping and scale, forestry operations, 
instrumentation, and geotechnical information. 

The coverage maps and discussion provided in Section 3.0 illustrate the relative spatiotemporal 
coverage of the available datasets. Based on these coverages, the following table identifies two 
potential initial study area locations (within the original Alternative 2 extents) for consideration. 
The areas outlined below should undergo further consideration prior to implementation of this 
study and are only provided here to illustrate how one may approach determining trial areas. The 
maps provided here (Figure 5-2) are insufficient for the level of detail required to make this 
determination, and an iterative review process with DNR should fine tune these areas with the 
selected contractor to implement the study design. 
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Table 5-1. Example targeted study areas and rationale. Additional areas should be considered 
based on data availability during study execution. 

Area Description 

1 
Western Whatcom County (Mount Baker to Lower Nooksack River) and the Upper 
Snohomish River System (Snoqualmie and Skykomish Rivers, including Upper Tolt and 
North Fork Snoqualmie) – 2,700 km2, >3,000 mapped DSLs 

Rationale: Western Whatcom County experiences a relatively high density of medium to large sized 
bedrock landslides and both detailed and supplementary landslide mapping is available. The area also 
encompasses geological diversity, including landslides initiating in glacial deposits, alluvial deposits, 
metamorphic rocks, sedimentary rocks, and igneous rocks. This area contains representative landslide 
types and geomorphic positions except for river valley landslides where undercutting may be a 
significant contributor to activity state. Adding the Snohomish River system, where these landslides are 
more numerous will address this deficiency. By itself, however, the upper Snohomish River system 
would not capture the landslide and geological diversity of western Whatcom. Additionally, up to six 
epochs of lidar coverage and stacks of ascending and descending ALOS-1 and ALOS-2 L-Band SAR 
data dating back to 2004 are available. Active historical and recent forestry operations are also 
recorded in the area. 

2 
Snohomish County (Sloan Peak to Snohomish) and the Snoqualmie River Valley (Fall City 
to Monroe, including Upper Tolt and North Fork Snoqualmie) – 3,600 km2, >4,350 mapped 
DSLs 

Rationale: Snohomish County has a relatively high density of small to large sized glacial and bedrock 
landslides and both detailed and supplementary landslide mapping is available. This area includes the 
SR-530 corridor and the Oso landslide. The area also encompasses geological diversity, including 
landslides initiating in glacial deposits, alluvial deposits, metamorphic rocks, sedimentary rocks, and 
igneous rocks. This area contains representative landslide types and landscape positions except for 
river valley landslides where undercutting may be a significant contributor to activity. Adding the 
Snoqualmie River Valley, where these landslides are more numerous will address this deficiency. 
Additionally, up to six epochs of lidar coverage and stacks of ascending and descending ALOS-1 and 
ALOS-2 L-Band SAR data dating back to 2004 are available. Active historical and recent forestry 
operations are also recorded in the area. 
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Figure 5-2. Potential targeted study areas in western Washington. 

The cost of study execution in terms of financial and human resources will scale proportionately 
with the size of the initial study area. The scope of the study, as coordinated with UPSAG, will 
therefore inform practical size limitations of the initial study area. A smaller study area will be both 
faster and less expensive to evaluate, though may lack statistical rigor and diversity to adequately 
characterize DSL sensitivity to both natural and forest practice triggers. During study execution, 
data availability should be updated and changes to available datasets should be considered when 
selecting a targeted study area. 

5.2. Velocity Characterization 

5.2.1. Background and Objectives 

A key objective of this Study Design is to investigate why DSLs with similar morphological and/or 
geological characteristics may exhibit differences in activity level and/or differences in response 
due to climate, weather, or forest management activities. The primary relationships of interest are 
between landslide triggering conditions (e.g., a wetting period, changes to surface water drainage) 
and changes in landslide displacement (e.g., Handwerger et al. 2022). This can be thought of as 
the response rate of a landslide and is typically related to depth to the sliding plane of the 
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landslide, material composition, and the ability for water to infiltrate at the surface. Shallower 
landslides originating in coarse grained material or highly fractured bedrock will likely respond 
fastest to changes in conditions, whereas deeper landslides originating in fine grained material or 
massive bedrock will typically respond slowest (Miller, 2017).  

Quantifying relationships between triggering conditions and landslide activity changes and 
providing a mechanistic explanation for it is one of the most formidable challenges in landslide 
science and is usually only resolved case-by-case (e.g., Lacroix et al., 2020). However, recent 
advances in remote sensing have allowed monitoring of landslide movement and velocities at a 
regional scale and may provide insights to spatial and temporal landslide activity characteristics 
for a population of landslides (e.g., Handwerger et al., 2022; Cignetti et al., 2023). To isolate these 
effects, it is necessary to understand the velocity of the inventoried deep-seated landslides. This 
may include a real velocity estimate (e.g., mm/yr), an estimate of the annualized displacement, or 
the status of the deep-seated landslide activity (e.g., active, dormant/relict). Regardless, an 
understanding of the activity state will be required to answer the stated research objectives. 
Where such data as LCD or InSAR is available, those landslides will be assigned an estimated 
activity level as can be determined utilizing each measurement technique. 

Precursory deformation prior to DSL collapse has been successfully identified using remote 
sensing technologies presented in this study design. The following are four examples of such 
works: Lato et al. (2019) used lidar change detection to identify precursory deformation in the 
vicinity of the Oso headscarp prior to the 2014 collapse. Morris et al. (2023) use InSAR and optical 
image pixel tracking to identify movement starting in 2015 at the release zone of the 2022 Chaos 
Canyon Collapse in Colorado. Van Wyk de Vries et al. (2021) used InSAR and optical image 
correlation to identify pre-collapse movement in the five years prior to the ultimate slope collapse 
in 2021 in Uttarakhand, India. Lacroix et al. (2020) identify precursory movement via InSAR over 
three years prior to a collapse of the Maoxian Landslide, China.  

5.2.1.1. Response Rate 

Luna and Korup (2022) recently completed a study in the Pacific Northwest where they 
investigated lag time between seasonal precipitation fluctuations and shallow landslide 
occurrence. Using Bayesian inference models, they found shallow landslide occurrence to lag 
seasonal increases in precipitation by three months for the aggregate dataset of five different 
landslide inventories in Oregon and Washington (Luna & Korup, 2022). Their models compared 
estimated rainfall conditions from the Parameter-elevation Regressions on Independent Slopes 
Model (PRISM, University of Oregon) with landslide date from five inventories, one of which was 
the WGS compiled landslide inventory described in this document.  

Their methods may be reproducible for smaller subsets of landslides and particularly for increases 
in displacement rate as opposed to the rapid failure date as was typically recorded for the shallow 
landslides they evaluated. While Luna and Korup (2022) relied only on a reported day of 
movement of a landslide, we understand DSLs are often moving for many days (or months or 
years), at varying rates. In other words, can we identify accelerations in persistently or episodically 
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moving DSLs and evaluate for lag relative to longer term hydroclimatic patterns or land use? 
Additionally, Luna and Korup (2022) evaluated precipitation only, whereas we also understand 
soil moisture may play a role in the onset of landslide activity.  

Initial studies conducted for DSLs in Western Canada by Froese et al. (2022) and in Western 
Europe by Distefano et al. (2023) have highlighted the potential application of large 
spatiotemporal hydroclimatic data sets to support understanding of landslide activity changes. 
This gives us an additional advantage in that we can compare precipitation and soil moisture data 
(see Section 5.4.3) to higher resolution displacement patterns to understand lag time of landslide 
classes and potentially individual landslides. Exploratory work will need to be conducted as a part 
of this study design to assess the feasibility of determining these lag times. 

5.2.1.2. Representative Landslide Velocity 

Assigning a single velocity value to a DSL will typically oversimplify the true deformation field. 
Instead, it is likely more accurate to establish a distribution of velocities. A three -dimensional 
velocity field is difficult to quantify and contains large uncertainties. Most work in the published 
literature to date relies on surface velocity fields from remote sensing (e.g., Booth et al., 2020) or 
point measurements from field instrumentation (e.g., Froese et al., 2022). Further complicating 
the characterization, the components of velocities can often be one-dimensional (e.g., horizontal, 
vertical) and not representative of the true three-dimensional movement vectors.  

These sources of uncertainty and inconsistency can be partially limited by assigning velocity 
classes to landslides instead of individual velocity values. Similar to evaluating a velocity 
time-series, variations in landslide velocity class through time can also illustrate inflection points 
between periods of acceleration, deceleration, or steady state activity. This is a poorly studied 
subject, and the present study will require new methodologies to be developed. However, the 
objective here is relatively straight forward: Design a workflow to calculate surface velocity fields, 
ideally with three-dimensional movement vectors, for thousands of landslides from remote 
sensing data (i.e., lidar, InSAR). This seems to be the most reasonable objective given the 
technologies discussed in this document and the scale of the program. For example, the proposed 
lidar change detection methods (Section 5.2.3) result in three-dimensional change vectors and 
InSAR can be used to decompose deformation into three-dimensional components (e.g., Sharifi 
et al. 2023).  

Recent work by Porter (2021), Porter et al. (2022), and van Veen et al. (2022) has made progress 
in categorizing landslide activity states and landslide types for the purposes of integrating into 
models that support the estimation of the likelihood of transition between velocity classes 
(condition states) utilizing Markov-Chain techniques. To model landslide velocity probability 
distributions, the authors related the landslide velocity condition states to the Cruden and Varnes 
(1996) landslide velocity classification (Table 5-2). In the original Cruden and Varnes 
classification, the Very Slow velocity class corresponds to landslides with a velocity ranging from 
16 mm/year to 1.6 m/year. Porter (2021) and Porter et al. (2022) subdivided the Very Slow velocity 
class into Class 2a (> 16 mm/year) and 2b (>160 mm/year) to facilitate better characterization of 
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the range of potential impacts from slides moving within this velocity range. The landslide velocity 
classes in Table 5-2 have been defined in terms of total annual landslide displacement criteria 
listed in the fourth column of the table. Further details about the proposed modified landslide 
velocity classification can be found in Porter et al. (2022). 

Table 5-2. Modified landslide velocity classification after Cruden and Varnes (1996). 

Class Description Typical 
velocity 

Proposed annual 
displacement 

criteria (m) 

Proposed mean 
annual 

displacement (m) 

7 Extremely rapid >5 m/sec --- --- 

6 Very rapid >3 m/min --- --- 

5 Rapid >1.8 m/hr --- --- 

4+ Moderate >13 m/month >16 64 

3 Slow >1.6 m/yr >1.6 6.4 

2b Very slow >160 mm/yr >0.16 0.64 

2a Very slow >16 mm/yr >0.016 0.064 

1 Extremely slow <16 mm/yr >0 0.005 

0 Dormant 0 mm/yr 0 0 

Recent work by van Veen et al. (2022) describes the application of regional remote sensed data 
to support the development of a landslide activity inventory for large slowly moving landslides 
along the Peace River in northeastern British Columbia. In this study lidar acquired in 2006, 2015, 
2019, and 2021 were utilized to detect changes. The LCD methodology utilized by van Veen et 
al. (2022) was able to estimate gross displacements with detectable limits between 15 and 50 cm 
between acquisitions separated by at least two years. The combination of this detection limit and 
time difference was typically able to characterize displacements in the velocity Class 2b or faster. 
Van Veen et al. (2022) also utilized ALOS-2 L-Band InSAR data collected over the study area 
during snow free periods for 2020 and 2021. 

For a given landslide, the annualized displacement is estimated by normalizing the measured 
displacement (via LCD or InSAR) by the time duration between acquisitions. One of the main 
findings by van Veen et al. (2022) is while the LCD data was able to provide definition for Velocity 
Class 2b and higher, the L-Band InSAR data better supported the velocity characterization for 
activity states 1 to 2a (<160 mm/year). Furthermore, temporal resolution of LCD or InSAR based 
methods are commensurate with the observational record of lidar or SAR acquisition, 
respectively. In other words, activity state estimates derived from LCD provide an activity state 
integrated over the duration between lidar acquisitions, which are typically a few years in 
Washington State. When lidar epoch acquisition spans two or more years, for example, it can be 
quite difficult to estimate the timing of activity state changes between collection dates and 
therefore, to estimate the conditions that may have triggered the change. Because InSAR 
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provides much more closely spaced temporal observations, activity state changes from InSAR-
based methods are often much better constrained compared to LCD derived methods. 

More recently, Cignetti et al. (2023) used C-band InSAR in Italy to characterize the velocity 
patterns of 279 landslides and assess if InSAR could reliably characterize movements and then 
assign relative landslide activity classes to existing mapped DSLs. The methodology applied by 
Cignetti et al. (2023) is explored further in Section 5.2.2. 

5.2.2. Methodology 

To best link various landslide classes and clusters in terms of current activity state and velocity 
transition sensitivity, a combination of complimentary data types is considered for this current 
design. The following sections will provide an overview of the specific data available over the 
study area and how, depending on the approach to processing the data, the results can be utilized 
to provide the most complete picture of the variability in landslide activity. The following staged 
approach is recommended: 

1. Characterizing Measurable Landslide Displacement: An initial stage would be to generate 
a multi-decadal picture as to which of the existing, mapped landslides have exhibited 
measurable displacement. This work would likely be completed in phases, beginning with 
comparison of one of the earlier lidar epochs with the most recent epoch to determine if 
any topographic change can be detected; where change is observed, processing of 
additional datasets could be completed in a subsequent phase. Based on the availability 
of high-quality Lidar and L-Band InSAR data, the focus would be as follows: 

a. Lidar Change Detection: Utilize available epochs of lidar data to generate overall 
displacement rates and annualized velocities for each combination of epochs. The 
specific lidar epochs should be considered for this phase of the study: 

i. Area 1a: 2005, 2006, 2009, 2013, 2017, 2022. 
ii. Area 1b: 2003, 2004, 2005, 2009, 2011, 2013, 2014, 2022. 
iii. Area 2: 2003, 2005, 2006, 2013, 2014, 2017, 2022. 

b. InSAR Processing: While there are both C-Band and L-Band coverages available, 
the processing of the ALOS ScanSAR L-Band data should be prioritized. Should 
there be sufficient budget, the processing of the Sentinel-1 C-Band data could also 
be considered. Where available the use of multi-look (ascending and descending) 
ALOS-1 and ALOS-2 data obtained between 2004 to 2011 and 2014 to 2022, 
respectively, should be utilized to provide definition as to velocity change trends 
between the lidar epochs to further define the temporal variability of velocities over 
time. From a costing perspective the initial priority would be to process the freely 
available archives of ALOS-1 data and then consider processing the commercially 
available ALOS-2 data. Based on the discussion regarding SAR data availability 
in Section 3.1.8.3, the following data sets warrant consideration for this task: 

i. Area 1a: 
1. ALOS-1 ScanSAR: Multiple image footprints cover this area for the 

Ascending track where between 12-20 images have been obtained 
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with relatively regular spacing between early 2007 and early 2011. 
The Descending footprints only have stack depths of up to 6 images 
and are not considered suitable to utilize to build InSAR time series. 
The ALOS-1 data is freely available, however there will be 
processing costs involved with generating the InSAR time series 
results. 

2. ALOS-2 ScanSAR: The primary ALOS-2 ascending and 
descending footprints that are centered over Area 1 consist of 12 
and 14 images, respectively, collected between late 2014 and 
mid-2022. While these stacks are not considered to be deep 
enough to provide high quality InSAR time series results there are 
likely valuable insights that can be gained to support the LCD 
analysis in mapping landslide activity. In addition, deep stacks (up 
to 64 images) of lower resolution ScanSAR data may be found to 
provide valuable data at a lower cost than the ALOS-2 Fine data. 

3. Option - Sentinel-1: While the C-Band Sentinel-1 data is not 
considered to be ideal for application in vegetated terrain, the fact 
that both the ascending and descending image stacks collected 
over this area are exceptionally deep (>50 images) for the time 
period between 2017-2022 provide additional data that can support 
the L-Band InSAR and LCD. As this data is freely available only the 
processing costs require consideration. 

ii. Areas 1b and 2: 
1. ALOS-1 ScanSAR: The ascending ALOS-1 coverages are spatially 

extensive over this area with stack depths ranging between 
12-15 images. While these stacks are not considered to be mature 
the fact that they are freely available makes them worthy of 
acquiring and processing. The spatial coverages of the descending 
footprints and the low number of images remote the processing of 
these data from consideration. 

2. ALOS-2 ScanSAR: There are both complete coverages of 
ascending and descending footprints over the study area with stack 
depths ranging between 12 and 15 images respectively. As there is 
a cost to acquire and process these data further work on feasibility 
(as discussed in Section 5.2.4.2 should be conducted prior to 
committing to purchase this data. As discussed for Area 1a, the use 
of the deep stacks (up to 64 images) of lower resolution ScanSAR 
data should also be considered. 

3. Option - Sentinel-1: As with Area 1a, there are very mature 
(>50 images) stacks of C-Band Sentinel-1 images available in both 
the ascending and descending look directions. While there are 
limitations in the ability of the C-Band SAR data to penetrate 
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vegetation, the freely available nature of the data and stack maturity 
warrant consideration to support characterization of activity 
between 2017 and 2022. 

2. Defining Velocity Trends: Once the landslides with measurable displacement have been 
identified, both the LCD results and L-Band InSAR can be utilized at the landslide specific 
scale to further delineate landslide displacement for DSLs in terms of the following 
groupings: 

a. No measurable displacement: Either InSAR data cannot be utilized based on 
geometrical considerations or displacements are below measurement thresholds 
for InSAR or LCD. 

b. Measurable displacement with no trend data: InSAR cannot be utilized based on 
geometrical considerations but total displacement over a time can be characterized 
by LCD.  

c. Measurable displacement trend below a defined threshold: InSAR expected to be 
able to reliably measure displacement based on geometrical considerations, but 
rates are below detectable limits for InSAR and LCD. 

d. Consistent and measurable displacement trend: InSAR measured displacements 
are above thresholds (clear signal) and are linear. 

e. Seasonal and measurable displacement trend: InSAR measured displacements 
above thresholds with consistent seasonal variability. 

f. Highly variable and measurable displacement trend (externally drivers): InSAR 
measured displacements with trends observed above the seasonal background. 

The above characterization will support the further delineation of landslide velocity condition 
states in relation to specific landslide types (Section 5.4.4.3). 

5.2.3. Lidar Change Detection (LCD) 

5.2.3.1. Background 

As multiple acquisitions (epochs) of lidar are completed through time over the same area, the 
ability to identify changes between datasets can add yet more detail to the timing and extent of 
landslide activity, in some cases facilitating the identification of precursor movements to larger 
landslide events (e.g., Lato et al., 2019) or of landslides yet to be identified through typical single 
vintage lidar analysis.  

The quality of lidar differencing results is highly dependent on the quality and resolution of the 
input datasets. In the change detection analysis, the dataset collected first (earlier in time) is 
referred to as the ‘baseline’ dataset, and the more recent dataset is referred to as the ‘active’ 
dataset. Data resolution is reported as average points per square meter in each dataset. Factors 
that contribute most significantly to variable point resolution across a scan region include the 
density of vegetation and slope angle. Areas with a greater density of vegetation typically have a 
lower density of bare-earth points than non-vegetated areas. Steeper slopes will typically have a 
lower point density than flat surfaces.  
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5.2.3.2. Methodology 

There are several methods for differencing lidar datasets that range in complexity and 
computational efficiency. Methodology can greatly influence the amount of noise and the quality 
of the results. Methods that describe 3-dimensional movement vectors should be employed for 
this study. Three common methods are described below: 

• The simplest method for lidar differencing is computing the difference in a pair of DEM, 
often referred to as a DEM of Difference (DoD). This method requires two homologous 
DEMs. Most modern DEMs are interpolated surface representations of corresponding lidar 
point clouds. The first source of error with this method is the interpolation that occurs when 
reducing a complex point cloud to a regularly spaced DEM. Additional error is introduced 
because a DoD represents vertical offset between two DEMs, even when surface change 
is not only in the vertical plane. 

• Surface based methods compute 3D distances between two surfaces or between a 
surface and a point cloud can increase accuracy and decrease noise in the lidar 
comparison process, but this typically comes at the expense of increased computational 
demand. Some common methods include: 

○ Cloud-to-mesh distance (Cignoni et al., 1998). 
○ Mesh-to-mesh distance (Aspert et al., 2002). 

• Point based methods increase accuracy further, decreasing noise and increasing the 
quality of the result. 3D point-based lidar differencing calculates the difference between 
two bare earth point cloud datasets along vectors representing the local normal of each 
individual point in the dataset (multiscale model-to-model cloud comparison, M3C2, Lague 
et al., 2013), or the shortest Euclidean distance between two datasets (cloud-to-cloud, 
Girardeau-Montaut et al., 2005). These methods are computationally expensive and have 
traditionally required datasets to be subdivided into smaller zones (typically less than 
30 million points per zone) for processing. This method produces enhanced results over 
DEM differencing or surface comparisons as the results represent a 3D change based on 
the full resolution of the point-cloud data. 

For highest accuracy of point-based comparisons, point clouds are typically co-registered via the 
iterative closest point alignment algorithm (ICP; Besl & McKay, 1992) before comparison. This 
reduces bias by minimizing systematic differences between the two datasets due to ground 
control and georeferencing errors at the time of data acquisition. 

Performing the ICP alignment and change detection is a very computationally expensive 
workflow. Most lidar change analysis today is conducted sequentially on computer processing 
units (CPU). An example of this is using Cloud Compare on a personal computer to perform the 
ICP alignment and then to implement the M3C2 algorithm. For small geographic extents, this 
method works well. Scaling the workflow to broad geographic regions such as the present study 
area (see Section 5.1), however, can quickly reach the limit of modern CPU architecture. Because 
the described workflow involves multiple independent calculations (e.g., calculating normal) and 
spatial queries (e.g., which points correspond between the two point clouds), moving the workflow 
to a parallel-optimized architecture decreases processing time by three orders of magnitude 
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(Weidner et al., 2022). Recent work by BGC has developed an approach to parallelize these 
computations on a graphics processing unit (GPU; Lato & Ferrier, 2022), increasing both 
efficiency and quality of results.  

5.2.3.3. Interpretation and Limitations 

Positive model differences can be interpreted as gain of material (e.g., material accumulation, 
bulging), and negative model differences can be interpreted as a loss of material (e.g., material 
removal, erosion). Figure 5-3 illustrates the relative loss and accumulation of material through a 
simplified active landslide mass. Figure 5-4 illustrates a simplified example of riverbank erosion 
and how this process is reflected in lidar change detection results.  

There are several limitations with lidar change detection. One limitation is the inability to detect 
translational movement where the ground and slip surfaces are parallel; in this instance, the 
ground surface appears unchanged between the two datasets (Figure 5-3). Because the lidar 
data represents the surface topography at each date, the analysis reflects surface changes only 
and cannot necessarily be extrapolated to interpret slide movements at depth.  

Positive changes reflected in lidar change detection analysis represent the amount of change that 
occurred along the shortest distance vector between the two datasets, and not necessarily the 
maximum magnitude of the deformation (Figure 5-3 inset). For example, a landslide with a slope 
angle of 35° showing a measured shortest distance vector of 0.5 m in the zone of positive 
topographic change would imply an equivalent true horizontal change of 0.90 m. This limits our 
ability to detect deformation on some landslides using lidar change detection analysis. For areas 
of significant riverbank erosion, the shortest distance change measurements are often an 
underestimate of the total horizontal magnitude of erosion.  

Change detection results are limited by the temporal and spatial resolution of the datasets and 
the relative accuracy of the lidar points between each dataset (also referred to as data precision, 
or local accuracy).  

• Temporal Limitations: Because LCD results indicate change between the date of 
acquisition for each point cloud, the magnitude of results must be considered in concert 
with the time range between epochs and with the landslide process. A common method 
for assessing rate of change with LCD data is to normalize the magnitude of change by 
the number of years between acquisitions. This provides an annualized velocity estimate 
(e.g., mm/yr). In some cases, such as large, deep-seated landslides, this may be a fair 
approximation of the actual rates of movement of the landslide. In other cases, such as a 
rapidly moving debris flow, this annualized estimate may underestimate the actual velocity 
of the landslide when moving. This limitation in Washington, where most lidar acquisitions 
are separated by at least one year, will preclude this method from identifying seasonal 
velocity changes.  

• Spatial Limitations: The assessment of topographic change between lidar datasets of 
different point density can result in spurious change. For example, in regions of steep 
topography, ridges and valleys may not be well defined in the lower resolution lidar 
datasets but are mapped in the higher resolution datasets. The difference in data 
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resolution, and resultant interpretation of the topology between datasets, is mapped as 
‘change’ by the algorithms used. These regions are considered erroneous. Erroneous 
results may also occur where data quality is reduced due to heavy vegetation on slopes. 
Because landslides are not programmatically identified based on LCD results, these 
erroneous results can typically be identified during landslide identification by trained 
analysts. Noise derived from heavy and dense vegetation typically appears as an irregular 
ground movement signature and does not match the expected ground movement 
signature related to landslide activity.  

 
Figure 5-3. Simplified schematic diagram of translational landslide showing positive change in the 

direction of movement. The amount of change along the shortest distance vector can 
be used to calculate the true horizontal change. 

 
Figure 5-4. Simplified schematic diagram of riverbank erosion (negative change) and deposition of 

material. 

5.2.3.4. LCD-Based DSL Velocity Estimates 

The utility of LCD should be evaluated across the study area with all available vintages of 
Washington State lidar (Figure 5-5). LCD should be performed at least where multiple acquisitions 
of lidar intersect mapped landslide polygons. LCD results will be used to provide annualized 
velocity estimates for landslide polygons (Section 3.1.3), or potentially for areas of landslide 
polygons where differential movement is identified. Velocity classes will be designated according 
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to Table 5-2. Landslide process (e.g., slide, flow) should not inform the annualized velocity 
estimates, however, the landslide class for a given landslide polygon (see Section 5.2.5) can be 
used in conjunction with velocity estimates for further analysis.  

For this study design, BGC conducted a proof-of-concept lidar change detection analysis on data 
from 2006, 2013, and 2017 along the Nooksack River just south of Whatcom County. The intent 
of the proof-of-concept was to show an example of results obtained from processing Washington 
State lidar with the BGC patented GPU-based methodology (Lato & Ferrier, 2022), including data 
from an earlier epoch (i.e., 2006). Results illustrate the ability of these methods to detect 
landslides of different process types and geomorphology. Results were generally good with a limit 
of detection of approximately 1-3 feet (0.3 - 0.9 m) and are only expected to increase in precision 
with newer epochs of lidar. 

In mid-2023, BGC expanded this proof of concept to a contracted project for the DNR, completing 
approximately 11,000 km2 of lidar change detection between four epochs of lidar (2006, 2013, 
2014, 2017; BGC, 2023). The work was aimed at identifying landslides and providing situational 
awareness for land managers. 

Although BGC is currently advancing similar work in northeastern British Columbia and 
preliminary results are encouraging, to date, we are not aware of projects that have successfully 
demonstrated using LCD to programmatically characterize landslide velocity for thousands of 
landslides. We expect the present study will have to work to develop a new methodology to 
consistently and efficiently perform this. Our recommended approach would be to exploit statistics 
of LCD distributions inside each landslide polygon to estimate the rate (absolute or relative) of 
movement. In most cases, even in lidar -rich regions such as western Washington, LCD will only 
be able to estimate landslide velocity in several change detection periods. This will likely miss 
considerable nuance in developing a full velocity time series for each landslide but should identify 
landslides that are active versus inactive, and this understanding alone should help with sensitivity 
estimates (e.g., landslides that are already moving are likely more sensitive to further 
disturbance). For further consideration of LCD derived velocity time series, see Section 5.4.4.3.  
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Figure 5-5. Proof-of-concept of lidar change detection with Washington lidar along the Nooksack 

River, Skagit County (Data source: Washington Lidar Portal). Dashed black lines 
indicate landslides mapped as a part of the Forest Practices landslide geodatabase 
(Section 3.1.2). 

It is likely that an approach based on a non-parallelized (i.e., sequential) computational method 
will be greatly hindered with respect to processing time and accuracy. For this reason, we 
recommend a GPU-based approach or similar and significant consideration be given to the ability 
of a proposed method to perform large-scale LCD. Requesting a proof-of-concept example may 
be prudent during a request for proposal period to assess for efficiency and accuracy of any 
proposed approach. 

5.2.4. Interferometric Synthetic Aperture Radar (InSAR) 

5.2.4.1. Applications, Considerations, and Limitations 

Satellite InSAR is a technique by which radar satellite images can be used to track ground 
displacements with millimeter level precision. When satellite radar images are collected, 
electromagnetic microwaves are transmitted from the sensor and the backscattered waves are 
returned to the satellite. By collecting a stack of radar images over time, the difference in the 
phase of the returned electromagnetic wave (Figure 5-6) at each data point (scatterer) can be 
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used to calculate surface displacements (Pepe & Calo, 2017). The InSAR technique can only 
resolve movement magnitudes smaller than half the radar wavelength between two repeat images 
and between adjacent scatterers (Baek et al., 2020; Figure 5-6). The spatial data resolution, 
wavelength, and the time period between radar image acquisitions can vary depending on the 
satellite used. The precision of the displacement measurements depends on the number of 
processed images, (typically 15 images or more) and the temporal continuity of acquisitions.  

 
Figure 5-6. Radar phase difference measured between consecutive radar images. 

Although InSAR is a mature technology used to monitor displacement, the suitability for obtaining 
reliable displacement data for DSLs in Washington State will need to consider the following: 

• Geometry: The operational SAR sensors are in polar orbit, following a path between the 
North and South poles (also called the satellite heading or azimuth) (Figure 5-7a and b). 
The sensors are designed to look either to the left, or to the right with some satellites 
having the ability to switch between left and right-looking configurations. The SAR sensor 
transmits the signal, at an incidence angle, measured from vertical, with the surface 
(Figure 5-8c and d). The vector between the satellite and the imaged surface is known as 
the satellite Line-of-Sight (LoS). When using InSAR for deformation measurement, it is 
important to note that only the component of the displacement vector in the LoS of the 
satellite can be measured (Figure 5-9). The ability to detect displacement is therefore 
dependent on the orientation of the slope of interest with respect to the satellite LoS. Slope 
movements orientated perpendicular to the LoS direction will not be measurable by 
InSAR, and therefore the satellite imaging geometry needs careful consideration 
depending on the orientation of the slope of interest. The LoS geometry also makes the 
interpretation of the movement direction ambiguous. For example, in an ascending orbit 
with right-looking sensor, positive LoS values are consistent with movement 
predominantly upward or towards the west, and negative values are consistent with 
movement predominantly downward or towards the east (Figure 5-8c). For a descending 
orbit, positive values are consistent with movement predominantly upward or towards the 
east, and negative values are consistent with movement predominantly downward or 
towards the west (Figure 5-8d). By combining ascending and descending acquisitions, the 
vertical and east-west components of the real displacement vector can be resolved. The 
more detailed processing and screening methodology described in Section 5.2.4.2 
provides a process for determining which geometries of landslides can be expected to 
have InSAR displacement points that are able to represent mean velocities to support 
initial stages of classification. Considerations for utilizing LoS measurements to more 
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reliably characterize velocities of DSLs in terms of hypothesized kinematics are discussed 
in more detail in Section 5.2.1.2. 

• Vegetative Cover: In vegetated regions, longer wavelength L-band SAR data is 
recommended since it provides an improved ability to see through vegetation resulting in 
higher precision measurements. However, commercial L-band data archives are currently 
only available from two platforms (ALOS-1 and ALOS-2) which means that data coverage 
is sparse and not necessarily available for locations and timeframes of interest for 
landslide activity characterization. Although Sentinel-1 and Radarsat Constellation 
Mission (RCM) SAR data can also be used for InSAR measurements, the data are 
captured at shorter C-band wavelengths. While the C-band data have been used 
extensively for monitoring surface deformation using InSAR timeseries approaches, 
successful use-cases are generally confined to areas characterized by low vegetation 
densities. More recently, L-Band data from both ALOS-2 and the Argentine SAOCOM 
satellite have been utilized to successfully detect landslides and generate time series for 
DSLs in mountainous and vegetated terrain along the Columbia River in British Columbia. 
While these results are not yet reported in the peer-reviewed literature the findings have 
been reported publicly by BC Hydro (BC Hydro, 2021) and presented to the international 
landslide community (Mitchell et al., 2023). As part of the characterization of a specific 
large DSL along the Columbia River, called the St. Cyr Rockslide, the authors have 
reviewed the relative ability of C-Band and both fi and coarse L-Band data to provide both 
spatial and temporal coverage of displacement data but have also coupled this data with 
lidar-derived surface morphology and structural measurements to support development of 
a hypothesized kinematic model this DSL. Figure 5-7 shows a comparison of the spatial 
data coverages obtained from Sentinel-1, ALOS-2 Fine and ALOS-2 ScanSAR to 
demonstrate the potential spatial coverages that could be obtained utilizing the existing 
data archives described in Section 3.1.8.2. Note that for the proposed study design, the 
use of ALOS-2 ScanSAR is prescribed as the primary data set and has stack depths of 
over 60 scenes of data. In comparison, the ALOS-2 ScanSAR results show on the far right 
image below comprise of a series of less than 15 scenes, therefore the spatial density of 
displacement points would be expected to be significantly improved when compared to 
the results shown below. 

   
Figure 5-7. Spatial displacement data coverage for a large rock slide along the Columbia River in 

British Columbia for (left to right) Sentinel-1 C-Band, ALOS-2 Fine L-Band, ALOS-2 
ScanSAR L-Band data. 
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• Changing Ground Conditions (Coherence Loss): InSAR can measure displacement only 
in areas on the ground that have the same surface conditions between all image 
acquisitions. Such areas are said to be ‘coherent’. InSAR analysis will result in noise 
and/or “no data” where the ground surface is disturbed between two acquisitions 
(e.g., construction activities, surface material raveling, agricultural activities, snow cover, 
etc.). It is important to note that the presence of snow introduces signal noise and limits 
the ability to extract InSAR measurements. Therefore, annual data acquisitions are usually 
limited to periods that were deemed snow free which implies that the monitoring of slope 
movement in periods of snow cover will not be possible. In addition, land use change 
products (discussed in Section 5.4.2.8) could also be utilized to determine where ground 
conditions have changed significantly between SAR acquisitions in order to assess 
potential impacts on coherence and over which periods displacement could more reliably 
be characterized. 

• Rate of Displacement: In addition to the sensitivity to the presence of vegetation, the 
wavelength of the sensor also dictates the measurement precision and maximum and 
deformation rates measurable by InSAR. Using SAR data, line-of-sight surface 
movements between successive image acquisitions is measured as a fraction of the 
wavelength of the SAR signal. The accuracy of this phase measurement is dependent on 
the signal-to-noise ratio of the sensor, which tends to be higher for shorter wavelengths 
(Hanssen, 2003). Therefore, if no external sources of noise are present, shorter 
wavelength data are more sensitive to small scale movements. The wavelength of the 
sensor also informs a fundamental condition for radar interferometry, which is the 
maximum detectable deformation gradient. If deformation at the surface induces a phase 
difference greater than half the wavelength of the sensor, the deformation cannot be 
measured unambiguously. Any surface movement between successive image 
acquisitions that exceeds this maximum will result in phase noise and the movement will 
not be measurable by InSAR. As only a half of a wavelength of change can be quantified 
between successive scenes, the choice of wavelength is an important consideration 
depending on the anticipated deformation rates. The theoretical maximum measurable 
deformation between successive scenes equates to ~1.5 cm, ~2.8 cm and ~11.8 cm for 
X-band, C-band and L-band sensors respectively. Considering the best possible revisit 
intervals of SAR satellites, the maximum deformation rates measurable by operating 
sensors are 25.7, 42.5, 127, and 87 cm/year for TerraSAR-X, Sentinel-1, RCM, and 
ALOS-2 respectively (after (Crosetto et al., 2016)). This makes TerraSAR-X and 
Sentinel-1 only suitable for measuring the very slow to extremely slow landslide classes 
identified in Cruden and Varnes (1996). In contrast, the (theoretical) higher revisit 
frequency provided by RCM and the longer wavelength provided by ALOS-2 makes it 
suitable for the monitoring of slow to very slow velocity classes. As part of the study design, 
the use of ALOS-2 ScanSAR data is expected to provide the highest spatial density of 
displacement data points and be able to characterize slope displacements with rates up 
to those as reported above. For displacement rates above the maximum detectable limit 
it is expected that the LCD data will support understanding where these more active areas 
are and where future more detailed phase unwrapping may be required. For displacement 
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rates below the detectable limits for L-Band, consideration for processing of the Sentinel-1 
data stacks should also be considered. While the spatial coverage of data will not be as 
dense as for the L-Band data, it may provide more information on the landslides moving 
in the range of millimeters to tens of millimeters per year. 

• Steep Slope Distortions: Another consideration for regional InSAR monitoring programs 
is the potential impact of geometric distortion of SAR data in steep mountainous terrains 
(Dai et al. 2022). Due to the side-looking geometry of the SAR sensors, steep slopes 
facing away from the radar look direction may result in a radar shadow if the slope angle 
is greater than 90° - the incidence angle of the data. These slopes will not be measurable 
with data captured in that geometry and data from a different look-direction will be needed. 
Similarly, for steep slopes facing toward the radar, if the incidence angle of the signal is 
smaller than the slope angle, the signal returns from the slope bottom and the top is 
reversed, resulting in an effect known as layover (e.g., Dai et al. 2022). Slope movements 
in these situations will also not be measurable with InSAR data. The areas affected by 
geometric distortions for a particular SAR acquisition geometry can be modelled using an 
external digital elevation model. These geometric masks should be provided with any 
InSAR results as it will be important to understand where no data was available compared 
to where no movement was detectable.  

 
Figure 5-8. Satellite acquisition geometries and sign of the measured displacement relative to the 

satellite for the ascending orbit (“a” and “c”) and descending orbit (“b” and “d”). 
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Figure 5-9. Simplified schematic diagram illustrating the line-of-sight measurement of the true 

displacement.  

5.2.4.2. InSAR Processing and Slope Activity Classification 

While it is critical that the data coverages are collected with consideration of the above, the 
approach to the interferometric processing of the data will also be key as there are two primary 
requirements to support mapping of ground displacements: 

• Maximizing the spatial density ground displacement data over the chosen study area 
• Providing regularly spaced and reliable time series data to discern multi-year, seasonal 

and event driven displacements for the maximum number of landslides possible. 

When considering InSAR as a tool for the extraction of the ground movement history of an area 
of interest, the operational limitations of InSAR data and data acquisition implications need to be 
considered. These include the following and are discussed in more detail in Section 5.2.4:  

1. The selection of sensor wavelength, which has a bearing on the maximum measurable 
displacement and the influence of vegetation. 

2. The consideration of the satellite image acquisition geometry and look direction in relation 
to the anticipated surface displacement orientation. 

3. The satellite revisit frequency and archive data availability which has a bearing on 
applicability for historical assessments and/or ongoing (future) monitoring. 

4. Geometric distortions in steep terrain preventing InSAR measurement.  

The Study Design proposes to utilize a staged approach to characterize spatial and temporal 
velocity patterns following a methodology recently applied to DSLs in Northern Italy and outlined 
by Cignetti et al. (2023). This technique uses a combination of InSAR processing techniques, 
existing mapped landslides, and topographic data to provide initial broad screening of activity. To 
promote statistically robust characterizations, they used a multi-criteria exclusion procedure to 
evaluate for 1) the number and distribution of persistent scatterers, 2) number of voids, and 3) 
skewness of the first-order nearest neighbor distance prior to assigning a velocity characterization 
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to a given DSL polygon. The results categorized landslide velocities into inactive, low, medium or 
high velocity (less than 2.5 mm/yr, 2.5-5 mm/yr, 5-10 mm/yr, and greater than 10 mm/yr, 
respectively). Pattern of movement was categorized into bimodal, heterogeneous, or 
homogeneous. The pattern designation was a subjective measure attributed by the authors. 
Figure 5-9 provides an overview of the process flow for the methodology proposed by Cignetti et 
al. (2023). 
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Figure 5-10. Flowchart for InSAR Activity Classification modified after Cignetti et al. (2023). 
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The following section more specifically describes the Cignetti et al. (2023) approach, as it could 
be applied to the regional DSL pilot study. The Implementation Team could consider differing 
approaches to processing that achieve similar objectives but the Cignetti et al. (2023) approach 
is provided for initial guidance: 

• Two Step Advanced-DInSAR Processing: The objective of this phase is to a) utilize the 
entire SAR time series to characterize broad displacements over the period of record and 
b) define where higher quality Persistent Scatterers (PS) are present that can adequately 
describe spatiotemporal displacement trends. The approach demonstrated by Cignetti et 
al. (2023) involves first undertaking a broad Small Baseline Subset processing 
methodology on the data to estimate atmospheric and small-scale non-linear deformation 
and then apply a full resolution analysis utilizing Differential SAR Tomography to detect 
and estimate topography and residual deformation of the PS. The results of these two 
different processing techniques are combined to provide large scale deformation 
measurements. Specific considerations related to processing accuracy and phase 
unwrapping are described in more detail by Cignetti et al. (2023).  

• Post-Processing of A-DInSAR Derived Displacement Data: In some cases, the LoS InSAR 
displacement data may not be suitable for use in characterizing landslide velocities based 
on poor alignment of the SAR imaging geometry with the displacement vector of the DSL 
(Section 5.2.4.1). To understand where this is the case, post processing is undertaken to 
calculate which component of movement can (or cannot) be characterized on a slope. 
Results from this work should be used to remove PS data that are unlikely to accurately 
characterize deformation on a slope. 

• Definition of Velocities Along Slope: For DSLs that contain suitable geometries for 
evaluation, available topographic data is utilized to support projection of the LoS InSAR 
data onto the fall line of the slope. Sharifi et al. (2023) provide a review of various 
methodologies and associated limitations related to the projection of InSAR LoS data that 
should be reviewed and considered for this process. Processing both L-Band and C-Band 
SAR data from different look geometries may improve along-slope velocity projections. 
Although the projection of a mean velocity along slope may seem an over-simplification, 
it will allow for the relative understanding of landslide activity across various landslide 
classes and clusters. 

• Multi-Criteria Exclusion Procedure: For the PS that are expected to be able to reliably 
support characterization of slope activity, Cignetti et al. (2023) propose evaluating the 
number of PS points present in each DSL, the distribution of the PS points within the DSL, 
and the clustering of PS points. The objective of this procedure is to determine whether 
an activity state can accurately be assigned to a DSL. For example, a) few PS points or 
b) poor distribution of PS points on a DSL would preclude accurate activity state 
characterization. 

• Point Statistical Analysis: Following application of the multi-criteria exclusion procedure, 
the mean along-slope projected velocities are used to classify each DSL as Predominantly 
Active (PA) and Predominantly Inactive (PI). This is achieved by utilizing a GIS-based 
Point Statistics tool and comparing groupings of neighboring PS points to review 
deviations from mean velocities within a DSL. DSLs with deviations of -2.5 mm to 
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+2 mm/year were classified as PI and those outside of this range were classified as PA. 
While this section is focused on integration of the InSAR data, this stage of the assessment 
would also benefit from the integration of the regional LCD data. For DSLs where the LCD 
was able to characterize displacement, these DSLs would also be classified as PA. 

• Spatial Statistical Analysis: DSLs that have been defined as PA are then subjected to a 
GIS-based “Cluster and Outlier” analysis to start identifying statistically significant spatial 
clustering of DSLs with similar activity states. 

At the end of this process, the following products could support next levels of the assessment: 
• Map of DSLs with mean velocities projected along the slope fall line. DSLs where 

InSAR is not suitable for characterizing velocities will also be highlighted so there is 
not an assumption that these DSLs are moving slowly, but rather that there is not data 
available. 

• Map of all DSLs showing the number of threshold screening criteria defined in the 
multi-criteria exclusion analysis that have been met. This will support definition of a 
relative quality parameter for each DSL in terms of how representative the InSAR data 
are of the overall velocity trends for a DSL. 

• Map of DSLs classified based on their state of activity (PA or PI) with an indication of 
variability in temporal velocity trends for PA-DSLs.  

These outputs will support subsequent phases of the analyses as follows: 
• The magnitude and variability of velocities obtained from the PA-DSLs will be coupled 

with the slope classification (Section 5.3.1) to support the definition of clusters of DSLs 
with similar velocity classes. 

• The PA-DSLs will be used to identify DSLs where there are time series data that can 
be considered for integration into a displacement database to support initial 
exploration of trends, as discussed in Section 5.4.4.3. 

5.2.4.3. Application of InSAR Velocity data to Higher Sensitivity DSLs 

Following the above process, DSLs that have been defined as having adequate PS coverage and 
that have been classified as having varying displacement patterns with moderate to high variability 
will be evaluated in more detail. Each DSL will require careful consideration to ensure that the 
LoS measurement is coupled with the expected ground deformations to accurately describe the 
velocities. Important considerations will be as follows: 

• What are the hypothesized kinematics of the DSL at this location? 
• What are the hypothesized or known vectors of displacement for the DSL based on either 

site-specific monitoring or based on interpretation of surface morphology? 
• How is the satellite LoS aligned in relation to the hypothesized displacements across the 

DSL? 
• Is there shallower deformation superimposed on the DSL that would mask the movements 

of the DSL? In this case, are the InSAR LoS measurements reflecting deformation of the 
shallower movement, rather than the DSL? This can be resolved by comparing the 
deformation results with landslide inventory and lidar elevation data. For example, if 
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InSAR-derived displacements are identified only inside a mapped shallow landslide 
feature that occurs within a larger DSL, then it would be assumed that the shallow 
landslide is moving even though the larger DSL is not. 

• If no InSAR points are observed on the DSL but the surface morphology represents an 
active feature, are displacements too fast for the InSAR? Confirm this by reviewing LCD 
data. 

• If only one look direction of SAR data is available, is it possible to resolve the 1D LoS 
InSAR data onto the hypothesized DSL displacement vector to obtain a representative 
velocity condition date value? 

• If there is 2D InSAR data available, do the horizontal (East/West) and vertical components 
of the displacement support the hypothesized kinematic model for the DSL? Can these 
data support a more refined projection of the InSAR data onto the actual DSL 
displacement vector? 

These considerations will need to be made at each of the moderate to high variability DSL 
polygons to ensure that the velocity data obtained from the InSAR is projected appropriately to 
provide a realistic representation of the velocity along the true displacement vector for the DSL. 
It will also be imperative that the LCD data is utilized in conjunction with the InSAR results to 
support the understanding of the kinematic model and to ensure that the displacement results 
obtained from the two different technologies paint a common picture of the velocity trends at each 
site. As these technologies are complimentary, utilizing the results of each to support validation 
of the other will be an important component of this program. 

5.2.5. Pixel Tracking 

For DSLs where a review of displacement data obtained from LCD and InSAR identify phase 
jumps that don’t allow for characterization of higher velocity displacements, pixel tracking could 
be considered to quantify these displacements. Pixel tracking can be applied to SAR imagery, 
optical imagery (e.g., aerial, satellite), and lidar based digital elevation models to identify sub-pixel 
offsets between subsequent images of the same ground area. For the Pilot Study, a key 
consideration will be whether there are existing archived data sources available with spatial and 
temporal coverage suitable for application of pixel tracking to DSLs in the study areas. 

Pixel Tracking has been applied to glacier motion studies for decades 
(e.g., Bindschadler & Scambos, 1991; Strozzi et al., 2002; Berthier et al., 2005). Image 
co-registration and correlation methods have provided a means for estimating co-seismic 
horizontal deformation from imagery for nearly the same period (e.g., Van Puymbroeck et al., 
2000; Leprince et al., 2007). SAR-based pixel tracking has been used to produce long duration 
(e.g., years) time series estimates for landslide displacements, even in densely vegetated terrain 
(e.g., Singleton et al., 2014; Raucoules et al., 2020). Mazzanti et al. (2020) demonstrates the 
utility of pixel tracking from satellite imagery to provide a nearly year-long, short interval (days to 
weeks) displacement time series at the Rattlesnake Hills landslide in Yakima, WA. Booth et al. 
(2020) provides a framework for applying phase correlation techniques to subsequent DEMs for 
identifying predominantly horizontal landslide deformations. These technologies are proven in the 
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literature at estimating ground deformation and their application to landslides is increasing as the 
spatiotemporal resolution of available imagery and computational capabilities increase. 

In both academia and industry, pixel tracking is not utilized as intensively as LCD or InSAR 
methods for landslide displacement studies and the methodologies are not immediately 
operational to the same scale of LCD or InSAR. However, methods for extracting glacier velocities 
at scale do exist (e.g., Dehecq et al., 2015), giving promise that these methods could be refactored 
and applied specifically for landslide displacement estimates. A key consideration is the size of 
the features of interest, where DSLs in western Washington tend to be smaller than most studied 
glaciers.  

Methods for producing pixel tracking based displacement estimates vary according to the base 
dataset, however, all styles of pixel tracking fundamentally rely on image correlation: 

• SAR based pixel tracking is based on correlation of coherence or intensity images 
• Optical imagery-based pixel tracking is based on phase correlation between Fourier 

transformed images 
• DEM based pixel tracking is based on phase correlation between subsequent lidar derived 

DEMs. 

Developing a methodology to programmatically characterize many (e.g., thousands) landslides in 
terms of 1D or 3D velocity components would be a significant contribution to landslide science. 
Notably, the accomplishment of this task could complement LCD and InSAR limitations. Following 
are specific examples of how a robust pixel tracking program could compliment these other 
change detection techniques: 

• Accurately characterizing horizontal deformation from pixel tracking could complement the 
stated limitation of LCD in estimating pure translational movements (Section 5.2.3.3). This 
is especially notable in the current study given the rich lidar datasets available across 
western Washington. 

• Producing long duration, short interval displacement time series from SAR or optical 
imagery could complement the stated limitation of LCD in identifying seasonal or 
sub-seasonal velocity signals (Section 5.2.3.3).  

• Utilizing optical imagery-based pixel tracking could complement the stated limitation of 
InSAR analysis in identifying landslide displacements in landslides that are aligned roughly 
north or south, and orthogonal to look-directions of SAR sensors (Section 5.2.4). 

There are several relevant references that should be considered in developing this framework. A 
few examples are listed below with a short summary of their relevant workflows. 

• SAR based: Raucoules et al. (2020) provide a framework for utilizing ALOS-2 SAR 
imagery in a heavily vegetated environment for tracking deformation of a large landslide 
moving at approximately 1m/yr  

• Optical based: Mazzanti et al. (2020) provide a workflow for evaluating landslide 
displacement from high spatiotemporal resolution optical imagery in eastern Washington 
(more arid and less vegetated than the present study site) 

• DEM based: Booth et al. (2020) provide a framework for identifying low-magnitude and 
predominantly horizontal deformation estimates from subsequent lidar-derived DEMs. 
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Once completed, we expect the DSL velocity characterization workflows from pixel tracking based 
methods would be quite similar to the workflow summary from Cignetti et al. (2023; 
Section 5.2.4.2 and Figure 5-9). This follows that the results will include a series of points on a 
landslide have been characterized in terms of displacement through time. Similar consideration 
should be given to the quantity and distribution of points in terms of how to classify the DSL.  

5.3. Development of DSL Class Designations 

The sensitivity of a given landslide to external perturbations (e.g., slope or surface water flow 
modifications) is fraught with nuance and likely only resolvable by a site-specific detailed 
subsurface study. Therefore, the present study aims to characterize populations of landslides into 
Classes, which should maintain homogenous characteristics such as mapped lithology, area, 
volume, failure depth, geomorphic position, and recharge area. Clusters of landslides should be 
identified as subsets of classes. Clusters should be proximal in the landscape and would be 
expected to respond to external perturbations similarly. This study aims to develop estimates of 
sensitivity of both DSL classes and clusters.  

5.3.1. Landslide Classes 

Classes of landslides should be derived through data analysis and expert interpretation. Classes 
may be spatially discontinuous and present across larger regions. So long as the data support 
the definitions, there is no upper limit to how many classes could be defined. However, we expect 
the number of defensible landslide classes to likely be around ten and would primarily be defined 
based on the nature of the originating parent material, the degree of structural modification, the 
topographic position on the slope, the exposure to active processes (such as toe erosion), slope 
aspect and distributions of systematically mapped landslides. The statistical distribution of 
variables from existing landslide inventories will be helpful in identifying classes. With appropriate 
data management and organization, it may be feasible to apply machine learning approaches to 
aid in defining landslide classes (e.g., the k-means clustering algorithm; Likas et al., 2003).  

In Figure 5-9, we show the distribution of landslide area, estimated failure depth, and ground slope 
as reported by the WGS for over 9,000 landslides in western Washington. The results are 
displayed as a function of the geological class of the source zone material for each landslide 
(based on data from Section 3.1.2 and 3.1.3). These results illustrate that landslides initiating in 
alluvial and glacial deposits tend to be smaller in area with shallower failure depths than those 
landslides initiating in surficial bedrock or lightly weathered bedrock materials. This is consistent 
with the expected lower shear strength and generally low-lying topographic position (i.e., in 
valleys) of alluvial and glacial materials. The data do not, however, suggest that slope in the upper 
portion of the landslide is influenced by source zone material type. Because shallower and smaller 
landslides respond more quickly to external perturbations (Miller, 2016, 2017), it may follow that 
landslides initiating in alluvial or glacial deposits may similarly respond more quickly to external 
perturbations compared to landslides initiating in bedrock materials. Landslides initiating in alluvial 
and glacial materials, therefore, might be considered more sensitive, though further work (such 
as field investigations or local scale monitoring) would be required to support this claim and herein, 
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we show this only as an example of a data interrogation approach that could be considered when 
conducting the study. Further landslide characteristics that could be considered, along with their 
rationale, are discussed in Section 5.4.2. 

 
Figure 5-11. Boxplots illustrate area, estimated failure depth, and slope for landslides in five 

different geological classes. Each box extends vertically from the first quartile to the 
third quartile, with a line at the median. One takeaway from this figure is that landslides 
initiating in alluvium and glacial deposits are typically smaller in size and shallower 
than those initiating in more competent bedrock materials. 

For one example, Porter et al., (2022) subdivided deep-seated landslide types typically 
encountered in glacial sediments and flat-lying shale and mudstone bedrock into five class 
designations (Classes A-E, Table 5-3). Class designations were largely based on morphological 
interpretation of landslide size, process type, the presence of toe erosion, long-term weighted 
average displacement rates, and evidence of episodes of relatively more rapid movement. The 
designation did not include other variables like geology, land use, or topographic slope angle. 
These definitions are provided for example only and may or may not be applicable to DSLs in 
Washington State. 
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Table 5-3. Example class designations from Porter et al. (2022). 
Behaviour Type Type A Type B Type C Type D Type E 

Typical geology 
Relatively 
intact shales, 
mudstones 

Relatively intact 
shales, 
mudstones, 
residual soils, 
over 
consolidated 
glacial deposits 

Relatively intact glacial 
deposits, colluvium 
derived from shales, 
mudstones, residual soil 
and glacial deposits  

Colluvium 
derived from 
shales, 
mudstones, 
residual soil and 
glacial deposits  

Colluvium 
derived from 
shales, 
mudstones, 
residual soil 
and glacial 
deposits  

Typical failure 
mechanism 

Translational 
block slides 
and spreads 

Translational 
block slides and 
spreads 

Translational block 
slides and spreads, 
rotational slides, 
complex earth slides-
earth flows 

Translational 
slides, rotational 
slides, earth 
flows, complex 
earth slides-
earth flows 

Translational 
slides, 
rotational 
slides, earth 
flows, 
complex earth 
slides-earth 
flows 

Typical inclination of 
basal shear surface 

Sub-horizontal 
(0 to 5 
degrees) 

Sub-horizontal (0 
to 5 degrees) 

Similar to the residual 
friction angle 

Similar to the 
residual friction 
angle 

Sub-parallel to 
the ground 
surface 

Typical toe condition No toe erosion Toe erosion 
usually absent 

Toe erosion may be 
active 

Toe erosion 
often active 

Toe erosion 
almost always 
active 

Long-term annual 
probability of Class 4+ 
velocities 

1 in 20,000  1 in 6,500 1 in 2,000 1 in 650 1 in 200 

5.3.2. Landslide Clusters 

Clusters are most simply proximal landslides of a particular landslide class. For example, if one 
class of landslides was defined as a DSL initiating in alluvial materials due to river undercutting, 
then a grouping of these landslides in a particular river valley will constitute a cluster. Due to 
spatial proximity, these populations will likely respond similarly to external forcings such as 
hydroclimatic conditions or river flows. This becomes useful in sensitivity analysis when 
hydroclimatic conditions may cause a decrease in the sensitivity of a cluster of landslides in a 
drought-stricken area, even though the sensitivity of the overall class of landslide may not change.  

Present-day landslide velocity may further define a landslide cluster as this attribute is indicative 
of sensitivity of the landslide to further perturbation (Section 5.6). Therefore, a cluster of a 
particular landslide class may function similarly regarding displacement and activity state. For 
initial screening, the criteria provided in Section 5.4 would be utilized to assess activity state. 

Following the definition of landslide classes, clusters should be identified using spatial- and 
data-clustering techniques (e.g., kernel density estimates, k-means). Spatial- and data-clustering 
methods will provide first order groupings of spatially proximal landslides and landslides with 
similar attributes. From these initial clustering results, subject matter experts should revise cluster 
definitions. Clusters and potential outliers may be visited in the field, as needed. Landslide classes 
and clusters will drive the sensitivity assessment efforts described in Section 5.4.  
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5.3.3. Consultation with Experts 

Landslide practitioners have been working in western Washington for many years and have a rich 
level of experience with observing behavior and characteristics of DSLs. Selected geologists and 
geotechnical experts in western Washington should be consulted following the development of 
landslide classes to determine if based on their experiences, any populations of DSLs do not fit 
in a recommended class. This consultation phase will aim to incorporate the collective experience 
of the landslide community in class designations. 

5.4. Assessment of Landslide Sensitivity 

To assess how likely a landslide is to respond to future hydroclimatic events or human activity, an 
important first step is to understand past behavior. The focus is to assess both the spatial and 
temporal aspects of landslide activity at regional scale with a sufficient time sampling to evaluate 
a variety of natural and human-induced events and their impacts on landslide activity. The 
following sections outline a methodology that considers the spatial variation of landslide types 
and characteristics and couples these with spatially continuous data sets that characterize 
historical displacement trends for DSLs. These data sets will be integrated with regional 
hydroclimatic and land cover data to assess drivers for landslide activity change.  

5.4.1. Historical Displacement Trends 

Once landslide classes have been identified, the next step will involve building an understanding 
of how these various landslides have moved historically to form the basis to assess how sensitive 
they will be to future disruption. This will also support the definition/refinement of clusters. By 
utilizing the results obtained from the LCD and InSAR analysis, the goal of this phase would be 
to represent the absolute movements over time periods and/or extract velocity trends over time 
to assign to each polygon. The following spatial representations of velocity trends could support 
the sensitivity:  

• DSLs with no measurable displacements (InSAR and LCD): Any DSLs that have either no 
measurable displacement from the LCD analysis or have been classified as PI--DSLs 
during the InSAR assessment will be considered as relict or dormant features 
(e.g., Velocity Class 0, or possibly near the lower limit of Class 1). 

• DSLs with measurable displacements but no seasonal trend data (LCD): These would be 
DSLs where displacement has been characterized with LCD but were excluded from the 
InSAR assessment based on geometrical considerations.  

• DSLs with consistent displacement trends (InSAR): Any DSLs that have been identified 
as PA-DSLs in Section 5.2.4.2 and exhibit low variability in velocity. 

• DSLs with seasonal displacement trends (InSAR): These would be PA-DSLs that are 
described as having seasonal and low-magnitude velocity variations. 

• DSLs with a high variability in movements (InSAR): These would be PA-DSLs with 
moderate to high velocity variation that may correspond to more focused external drivers, 
such as hydroclimatic events or human activities. These DSLs may be representative of 
landslides that are highly sensitive to disturbance. More specifically this would be 
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characterized as very well-defined, shorter-term acceleration of landslide activity following 
observed disturbance of the landslide by toe erosion or human alteration of surface 
water/vegetation. It is likely that this set of landslides would be the initial focus on time 
series extraction to support the next phases of assessment. 

While each polygon in the inventory should be assigned with one of these broader classifiers, this 
does not preclude integrating the discrete velocity trends that can be extracted over the period for 
which displacement data is available. 

5.4.2. Landslide Characteristics for Sensitivity Assessment 

When reviewing the displacement data, it is likely that there will be variations in activity that may 
correlate with different landslide characteristics. These characteristics may be useful for both 
defining landslide classes (Section 5.3.1) and/or assessing the sensitivity of landslide classes. 
This section will describe if and how others in the literature have leveraged these landslide 
characteristics to assess sensitivity and how they may be most useful to the present study. During 
study execution, it is possible that limited or no relationships with some of these variables will be 
found. However, we believe there to be enough scientific merit and precedent that is worth 
cataloguing and evaluating the following variables in terms of landslide class sensitivity. 

5.4.2.1. Geology and Soils 

Geologic unit (surficial or bedrock) and soils units of a given landslide can have far reaching 
impacts on the response of a landslide to changing conditions. These include, for example, 
hydraulic conductivity parameters, structural characteristics such as the presence and orientation 
of discontinuities that could promote landsliding, or compositional properties such as enhanced 
clay content that can promote landsliding. For the purposes of this study, mapped geologic and 
soils units could assist in developing landslide classes. Once cataloged, geologic and soil 
materials should be ranked in terms of stability parameters and used in sensitivity assessments 
as a relativistic variable. For example, all things being equal, landslides originating in glacial 
materials will likely be more sensitive to changes in hydroclimate or surface drainage than large 
rockslides originating in metamorphic rocks. This is of course not a rule, but a relationship to be 
explored during data analysis.  

5.4.2.2. Slope and Aspect 

While slope is often reported as the single most important factor in shallow landslide initiation 
(e.g., Budimir et al., 2016), it is much less important in studies of deep landslide initiation and 
should generally be considered in context with the myriad other factors influencing DSL initiation 
(Burns & Mickelson, 2016). However, because DSLs occur at various positions within the 
Washington landscape, from river valleys to steep mountain flanks, we expect that slope may be 
useful in differentiating landslide classes (Section 5.3.1) and potentially landslide class sensitivity 
estimates. 
Topographic aspect is another related factor that may assist in both DSL class definition and 
sensitivity assessment. The primary mechanism by which aspect can influence DSL behavior or 
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sensitivity includes evaluating the geometric relationships between the downslope preferred 
direction of movement (i.e., the “fall line” direction) and any available geologic mapping that 
includes fracture, foliation, or other discontinuity information (Burns & Mickelson, 2016; 
Wooten et al., 2022). For example, if foliation or another weakness plane is dipping to the 
southwest, and a slope is similarly oriented such that the fall line of the topography is to the 
southwest, then perhaps this is an ideal geometric alignment for continued DSL activity and 
increased sensitivity. This relationship should be assessed for populations of DSLs in the present 
study with varying activity states but otherwise similar characteristics.  

5.4.2.3. Surface Roughness 

After activation, landslides are quite rough in texture and through time, natural geologic 
weathering processes smooth out topography across the landslide scar. Authors working in 
Washington and Oregon have successfully exploited this phenomenon to utilize surface 
roughness, as estimated from high resolution lidar, as a proxy for age -dating DSLs 
(LaHusen et al., 2016; Booth et al., 2017; LaHusen et al., 2020; Herzig et al., 2023).  

Surface roughness can be approximated by utilizing several methods to quantify heterogeneity in 
topographic variables (e.g., slope). For example, authors have explored the use of standard 
deviation of slope, root mean square height, direction cosine eigenvalues, Ricker wavelets, and 
others (Berti et al., 2013; Goetz et al., 2014; LaHusen et al., 2016).  

Most recently in Washington, Herzig et al. (2023) estimated the age of last activity of >1,000 DSLs 
in the Puget Lowlands using a calibrated surface roughness-age relationship. Nine radiocarbon 
dates collected by Herzig et al. and six dates collected by Booth et al. (2017) were used to 
calibrate the relationship within this inventory. Most ages clustered between approximately 
200 and 2,000 years before present. Therefore, the ages of more recent landslides (<100 years) 
are quite poorly constrained. This is typical of the literature, and to present, authors employing a 
surface roughness-age calibration approach (e.g., LaHusen et al., 2016; Booth et al., 2017; 
LaHusen et al., 2020) have primarily shown success at using the method to investigate only long 
term (102 to 105) landslide activity trends. However, these same studies often show a low degree 
of confidence in using the method to estimate more recent (<100 years) landslide activity trends 
(Figure 5-10).  



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 
Study Design Project No.: 2365001 

Document 11. WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 69 

BGC ENGINEERING USA INC. 

 
Figure 5-12. Results from previous studies (LaHusen et al., 2020 and Herzig et al., 2023) illustrate 

the typical timescale of study for surface-roughness based methods for identifying 
landslide activity states. A dashed green line is shown at a landslide age of ~100 years. 
Note that below this value (0-100 years), the confidence bounds for both studies 
increase markedly. 

Given the high degree of variability in landslide morphology immediately following failure and the 
weathering characteristics in the immediate aftermath of a landslide, the methods are unlikely to 
provide significant insight into landslide activity along human timescales. Therefore, for this study, 
we propose to consider a surface roughness-age relationship (utilizing data from the previously 
referenced studies in Washington and Oregon) for the purpose of clustering dormant or relict 
landslides. However, it is unlikely this method will provide meaningful information regarding the 
present-day activity states of DSLs. 
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5.4.2.4. Depth to Rupture Surface 

As the depth of the rupture surface of a DSL increases, the rupture surface tends to become more 
disconnected from surface activities such as increased runoff or infiltration. This can increase lag 
time between disturbance and activity or can reduce the sensitivity of the landslide to changes in 
activity state. However, depth to rupture surface is a notoriously difficult parameter to estimate 
from surface observations alone. Of the compiled landslide inventories (Section 3.1.2), only the 
WGS inventory contains an estimate on failure depth. Failure depths in this inventory are 
estimated as a function of ground slope angle and head scarp height (Burns & Madin, 2009), 
however these methods are not widely agreed upon as a preferred solution 
(Burns & Mickelson, 2016).  

Jaboyedoff et al. (2020) provides a review of existing methods for estimating depth and does not 
converge on a single preferred method, but instead, suggests future efforts toward an adequate 
depth (and volume) estimation technique should include surface velocity data to facilitate a 
conservation of mass approach. This is encouraging, given the present study intends to catalog 
a rich dataset of surface velocities. During study implementation, consideration should be given 
to investigating the feasibility of integrating geometrical relationships with surface velocity fields 
to better estimate failure depth. We expect this would provide a great input in terms of landslide 
class sensitivity and would be a great contribution to the landslide community. However, as this 
is a formidable problem in landslide science, the project team should carefully consider the level 
of effort to do so and if the expected outcomes are worth the investment. 

5.4.2.5. Topographic Position 

For the present study, we expect the TPI could be useful for assisting in defining landslide classes. 
For example, this metric may assist in identifying DSLs that are in valleys or along lower slopes 
compared to those that are within middle to upper slope regions. The TPI algorithm can be applied 
to landscapes at various scales and the hyperparameter tuning will greatly influence results 
(De Reu et al., 2013). An example is shown in Figure 3-3, where we evaluate TPI at a broad scale 
(e.g., across tens of miles) across western Washington. Landslides that initiate and arrest in 
alluvial materials are expected to be most sensitive to river flows and due to their statistically 
shallow failure depths and small areas Figure 5-10), may respond relatively quickly to surface 
disturbances. Conversely, landslides that initiate and arrest in upper slopes underlain by more 
competent geologic materials may respond more slowly to surface disturbances. These 
relationships should be explored once landslides are attributed in terms of velocity and 
topographic position. 

5.4.2.6. Toe Condition 

Toe condition is a subjective measure of how actively the toe is exposed to erosional forces, most 
often in the form of active river erosion. An example of how this measure can be used in landslide 
class definitions is shown in Table 3-3. As to sensitivity, landslides actively undergoing toe erosion 
(e.g., Figure 5-4) are likely more sensitive to further perturbations compared to those that are not 
actively undergoing toe erosion. The kinematics of how modern-day toe erosional processes can 
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influence landslide sensitivity are similar to the influence glacial debuttressing can impart on 
historic landslides (e.g., Lacroix et al., 2020 and references therein). 

5.4.2.7. Forestry Activities 

Though the literature is rich with works pertaining to forestry activities’ influence on shallow 
landsliding (e.g., Jakob, 2000; Imaizumi et al., 2008; Goodman et al., 2023), virtually no work has 
been published to date on the influence of forestry activities on DSL activity. In his review, Miller 
(2017) did not identify any studies that investigated the causal relationships between forestry 
activities and DSL activity. As of 2024, we did not identify any studies that have been added to 
the literature since Miller’s review. 

However, several factors that influence DSL behavior (e.g., soil hydrology and overland flow 
patterns) are indeed influenced by forestry activities (Miller, 2017 and references therein). This 
gives weight to the hypothesis driving this study design – that forestry activities can and do impart 
an influence on DSL behavior.  

It is well established in the shallow landslide community that there is a period after logging ceases 
when elevated risk of landsliding is present (e.g., Goodman et al., 2023). This tends to be due to 
root decay processes and loss of hydrologic contributions made by local ecology (e.g., 
evapotranspiration, canopy interception). It perhaps is reasonable to expect a similar relationship 
to hold in the potential effects of forestry activities on DSL behavior, however, the duration of 
influence is likely different.  

For this study design, forestry operations data (Section 3.1.3) should be considered in terms of 
landslide class definitions and sensitivity assessments. Landslides that are proximal to 
documented forestry operations may be considered more sensitive to further disturbance. The 
date of forestry operations will be important, and much is unknown about these effects, their 
timing, and their mechanics. Findings from this work will be a strong contribution to the 
understanding of DSL behavior in the face of forestry operations both in Washington and the 
greater Pacific Northwest.  

5.4.2.8. Land Use/Land Cover Change 

LULC (Section 3.1.5), and particularly anthropogenic changes to LULC, is an increasingly 
discussed topic in terms of shallow landslide susceptibility (Pacheco Quevedo et al., 2023). 
However, very little work has been published to date in terms of the effects of LULC change on 
DSL behavior. This study should consider identifying LULC patterns proximal to active and 
inactive landslides to assess for correlations. No correlation may be found and LULC data may 
not be overly useful in assessing sensitivity, however, the easy availability of LULC data may 
provide insights to how LULC is influencing DSL behavior in Western Washington.  

5.4.3. Evapotranspiration and Hydrology 

Hydroclimate and land cover drive landslide activity by influencing surface and subsurface 
hydrologic conditions. It will be important to establish correlations between seasonal or multi-year 
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fluctuations in velocity to hydrology of these landforms. While it is not practical to quantify the 
surface and near surface hydrogeology at any single location, there are publicly available 
geospatial data sets that can be utilized to develop qualitative/semi-quantitative correlations with 
historical landslide activity. Some of the key publicly available datasets that can be considered to 
support this assessment include the following: 

• Hydroclimatic Data: Globally continuous modelled hydroclimatic data sets dating back to 
1950 are available from the European Center for Medium-Range Weather Forecasting 
(ECMWF) and NASA. These data sets integrate satellite-derived data with ground and 
aerial observations to model a wide array of hydroclimatic, atmospheric and ground 
conditions over time. Froese et al. (2022) provides an example as to how these types of 
data have been utilized to support understanding of the sensitivity of different landslides 
to broader decadal and seasonal soil moisture change and these data sets are likely 
considered to be foundational to support the development of regional correlations in the 
study area. 

• Precipitation Data: Developed and made available by the National Oceanographic and 
Atmospheric Administration (NOAA) the NCEP North American Regional Reanalysis 
(NARR) data set provides a high-resolution combined model and assimilated dataset of 
precipitation data over North America that is available back to 1979. While there are many 
different parameters reported in this dataset, key parameters driving water infiltration, such 
as precipitation and snowmelt are expected to be key data sets to support the sensitivity 
analyses. 

• Topographic Recharge Area: Area of the land surface that is draining to the upper portions 
of a DSL will also be a consideration in understanding how regional hydroclimate and 
precipitation drive landslide processes at the local level. Figure 5-10 provides a distribution 
of recharge areas to over 6,000 DSLs in western Washington. We understand that the 
groundwater recharge area often differs from topographic recharge areas for DSLs, 
however, topographic drainage area serves as a proxy for recharge area and is a metric 
that can be computed at scale with existing datasets. By combining geological and soils 
maps (see bullet below) with these data, we may be able to further subdivide watersheds 
based on an estimate of recharge potential. As the percentage of a watershed that is 
harvested increases, so does the annual water yield of the basin, given the loss in 
evapotranspiration and canopy interception (Moore & Wondzell, 2005; Miller, 2017). This 
increase in yield can increase subsurface drainage, especially in geologic materials that 
have high permeabilities, and potentially destabilize DSLs (Miller, 2017). 

• Land Cover/Land Use: As discussion in Section 3.1.5, there are extensive global data sets 
available that provide change in relation to lands use and land cover that can be assessed 
both qualitatively and quantitatively in conjunction with other data sets to assess the 
relative impact of these surface changes on landslide activity. Variables such as 
vegetative cover (in terms of quantity and quality) and human disturbance, when 
integrated into the same spatial and temporal frames as the other data sets can allow for 
quantification as to the relationships between these factor and other extrinsic drivers and 
assess the relative importance in relation to landslide activity changes. 
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• Soils Data: It is expected that national and state soils data, such as publicly disseminated 
by the USDA will provide important information as to the types and drainage 
characteristics of near surface soils which will also support understanding the relative 
susceptibility of landslides to water infiltration and impacts on landslide activity. Coarser 
and shallower soils are likely to communicate hydrologic signals more rapidly to the 
subsurface, potentially increasing the sensitivity of DSLs initiating in these soils. 

 
Figure 5-13. Distribution of DSL recharge area illustrates most landslides drain between 

100-100,000 m2. Drainage area computed via TauDEM in OpenTopography 
(Tarboton, 2005) DEM source: USGS. 

The above publicly available datasets can be used to illustrate how different temporal and spatial 
scale hydroclimatic variables can influence landslide activity. Figure 5-10 and Figure 5-11 provide 
spatial and temporal depictions of modeled soil moisture obtained from the ECMWF’s ERA-5 
dataset and precipitation and snowmelt obtained from NOAA’s NARR data set in relation to the 
multi-year period around the Oso landslide in March 2014. 
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Figure 5-14. ERA-5 (Level 4) Standard Deviations from Historical Monthly Mean Soil Moisture for 

March 2014 (Data source: Hersbach et al., 2020). 

Figure 5-14 provides a spatial representation of ERA-5 derived soil moisture for March 2014 in 
terms of standard deviation from monthly mean (1950 to present) of modeled soil moisture. Based 
on this review, the near surface soil conditions (modelled at 1-3 meters below ground surface) 
were wet of normal (0.5 to 1.5 Standard Deviations from Mean) related to the 72-year record.  

Figure 5-13 provides a time series extracted from the same data set at the location of the Oso 
Landslide and provides a time series view of the soil moisture in terms of standard deviation from 
the monthly mean soil moisture and the 2-year rolling average of the same metric. Also provided 
are the modelled precipitation (24-hour and 60 day cumulative) and snow melt (daily and 60-day 
cumulative). When reviewing the soil moisture data, monthly soil moisture values are 1.5 standard 
deviations above mean, but not the highest observed during this period. Perhaps the most 
interesting observation is provided by the 2-year rolling standard deviation from mean which 
illustrates that the four-year period (2010-2014) preceding the Oso landslide event (Washington) 
was a prolonged period of above average soil moisture. This type of analysis may be useful in 
suggesting causal mechanisms between hydrologic conditions and landslide activity. However, it 
will be important to evaluate potential causal mechanisms with regard to groundwater flow 
pathways between near surface zones and DSL failure zones which may be deep and/or within 
confined aquifer zones. 
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Figure 5-15. Hydroclimatic Data time series at the Oso Landslide. (Top) ERA-5 (Layer 4) soil moisture depicting the monthly standard 

deviation from mean (Blue line) and the 2-year rolling deviation from the monthly mean (Red Line). (Bottom) Precipitation 
(24-hour and 60-day cumulative) and Snow Melt (24-hour and 60-day cumulative). The green dotted line represents March 
2014 (Data Source: Hersbach et al., 2020).
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When coupled with soil moisture data, available precipitation and snowmelt data can further 
contribute to the understanding of landslide activity states in addition to rainfall-only thresholds 
(e.g., Iverson et al., 2015). Figure 5-15 provides an overview of a subset of the precipitation 
(24-hour and 60 day cumulative) and snow melt (daily and 60-day cumulative) to understand 
whether there were any “pulses” of water infiltration that would coincide with the March 2014 
landslide in this example. When reviewing Figure 5-15, there is a local maximum in both 
cumulative snow melt and precipitation in March 2014 that likely contributed to a significant 
increase in water infiltration at this location. This focused pulse of water infiltration, coupled with 
the historically high antecedent soil moisture may have played a role in the timing of the landslide 
at Oso. 

While the above graphics and description are meant to highlight how these publicly available 
datasets can be utilized to support understanding as to the drivers of activity change on a 
qualitative basis, they may also be harnessed, along with robust displacement data sets to 
attempt to quantify these relationships. 

5.4.4. Assessment of Combined Impacts 

The preceding sections have outlined how various critical variables influence sensitivity of 
landslides. The determination of the sensitivity of landslides to external variables may be 
conducted at various scales (landslide classes, clusters, or even individual landslides). The goal 
of this section is to describe considerations and methods for assessing sensitivity of landslide 
classes or clusters, as defined in Section 5.3. 

5.4.4.1. Data Compilation and Organization 

The next step of the assessment is to compile spatial and temporal data to support cluster 
sensitivity assessment (Section 5.4.4.4). The database (Section 4.2) should be populated with 
attributes collected thus far in the study and with velocity-based condition states and time series 
results. Datasets in Table 5-4 have been described elsewhere in the document and Table 5-4 
should not be used as an exhaustive attribute list. We provide this simply to illustrate a potential 
attribute list and corresponding options. 

Table 5-4. Potential attribute list and categories for compiling information on each DSL. 

Data Category Subcategories Relevant Study Design Sections 

Geology 

Unit 
Lithology 
Proximity to Faults 
Degree of Metamorphism 

3.1.1, 5.4.2.1 

Topography 

Roughness 
Convexity 
Aspect 
Slope 

3.1.3, 3.1.7, 5.4.2.2, 5.4.2.3, 5.4.2.4 
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Data Category Subcategories Relevant Study Design Sections 

Landslide Attributes 
Location 
Dimensions 
Topographic Position 

3.1.2, 3.1.4, 5.4.2.5 

Landslide 
Classification 

Class  
Cluster  

5.3 

Activity Classification 
Active/Inactive (A/I) 
Mean Velocity (mm/yr) 
Variability (L, M, H) 

5.4.1, 5.2.3.4, 5.2.4.2, 5.2.4.3 

Displacement Time Series 5.2 

Hydroclimate 
Precipitation (mean) 
Soil Moisture (mean) 

5.4.3 

Land Use Category 3.1.5, 5.4.2.8 

Forestry Activities 
Distance 
Date 

3.1.3, 5.4.2.7 

Table 5-4 provides only a sample of what we expect would be many tens of attributes and 
corresponding categories. Following analysis, this attribute list should be considered by the 
project team and stakeholders as it will serve as the basis for the sensitivity assessments. 

5.4.4.2. Data Visualization and Exploration 

Once data are organized and accessible to landslide subject matter experts on the project team, 
exploratory data analysis should be conducted to explore relationships such as: 

• Bi-variate relationships: Comparing variables such as Activity State or Mean Velocity 
directly to independent variables such as geological unit, topographic position, surface 
roughness, slope aspect to assess strength of relationships 

• Multi-variate relationships: Comparing combinations of independent variables to review 
the relationship with Activity State or Mean Velocity to visually identify trends that may 
support further review. 

The focus of the above exploratory analysis is to test a series of hypotheses that have been 
developed in relation to the linkages between landslide activity and the suite of independent 
variables (and combinations of variables) defined during the study to assess which trends or 
outliers require more specific study and more robust statistical review. 

5.4.4.3. Velocity Time Series Analysis 

Velocity time series data, based on methods described in this report thus far, will fundamentally 
consist of a series of points within landslide polygons that describe the velocity for a given time 
step. In the case of InSAR or pixel tracking, there may be displacements for many time steps, 
facilitating the development of a long duration, short interval time series. In contrast, LCD results 
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will only contain displacements for up to a few time steps, commensurate with the number of lidar 
datasets available for any given location.  

From these velocity time series data, there are several useful outcomes and potentially more 
information to extract from time series analysis. The simplest metric to extract from these data is 
a binary classification of if a landslide has moved faster than the lower limit of detection for a given 
method. This classification would indicate to DNR which landslides have already fallen below a 
factor of safety of one and are therefore likely susceptible for further disturbances and are the 
most highly sensitive landslides in the inventory. These data, even in the case of LCD derived 
time series, would be useful in the same context as presented in Cignetti et al. (2023). 

More advanced analysis should seek to identify temporal clusters of accelerations or 
decelerations in landslide velocity. In terms of the temporal component, Urgilez Vinueza et al. 
(2022) offer a framework for identifying accelerations or decelerations in InSAR displacement time 
series data that is fundamentally based on fitting piecewise linear functions to cumulative 
displacement time series (Figure 5-16.) The example shown from Urgilez Vinueza et al. (2022) is 
from a single pixel within a landslide. However, the present study should consider statistically 
valid methods of performing a similar analysis for all pixels in a landslide or on an aggregate 
cumulative time series dataset (e.g., the mean of all pixels in a landslide). In an appropriate 
computational environment, this could provide a scalable method for identifying the timing of 
accelerations and decelerations for a large population of landslides. If SAR or optical image pixel 
tracking is successful (Section 5.2.5), we expect similar methods could be applied to those 
displacement time series data.  

 
Figure 5-16. Example from Urgilez Vinueza et al. (2022) illustrating a two-stage method for detecting 

accelerations or decelerations from cumulative displacement InSAR time series data. 
The first stage includes omitting outliers (blue crosses in panels a-b). The second stage 
includes fitting a piecewise linear function to the data as shown in panels c-d). 



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 
Study Design Project No.: 2365001 

Document 11. WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 79 

BGC ENGINEERING USA INC. 

The temporal analysis of lidar-derived time series data (i.e., from LCD or lidar -derived pixel 
tracking) will be much simpler, given the much coarser resolution of the time series. For example, 
it is unlikely that lidar-derived displacement data will contain more than several velocity estimates 
over the period of record, given the number of epochs of lidar available in western Washington 
(generally less than 10). However, temporal analysis of lidar-derived data is still important 
because it will be a critical resource for evaluating movement patterns of landslides that moving 
faster than is suitable for InSAR analysis and will still have several useful outcomes: 

• Confirm if landslides are moving at velocities that exceed the capability of InSAR analysis 
and require application of another processing approach, such as pixel tracking, to develop 
time series data. 

• At generally 1- to 3-year intervals, determine the velocity class of landslides and see if 
landslides are consistently moving or are experiencing accelerations and decelerations, 
even though details on these changes will be slightly subjective and open to interpretation. 

• Provide estimates on velocity for landslides that are poorly oriented given the geometry of 
InSAR. 

• Corroborate the InSAR derived temporal analysis for landslides moving at approximately 
velocity class 2a, a rate that others have shown can be detectable by both InSAR and 
high-quality LCD (Section 5.2.1.2). 

• A key outcome of the temporal analysis is to provide the means to then identify spatial 
and temporal clusters of landslide accelerations or decelerations. This will be fundamental 
to testing the hypothesis that regional hydroclimatic drivers are causing regional activity 
changes to landslides (with an unknown lag time).  

5.4.4.4. Cluster Sensitivity Analysis 

There are many approaches that could be used for further qualifying the influence of landslide 
attributes discussed herein. Perhaps the simplest approach would rank the influence of velocity 
trends, material properties, geomorphic setting, or evapotranspiration/hydrology on landslide 
sensitivity to external perturbations. This relativistic ranking may allow DNR to estimate which 
landslides are most sensitive to a proposed project when the project may impact many landslides. 
The following steps are recommended to support this approach: 

• Once displacement data is available, each existing landslide polygon would be reviewed, 
and the following validation and data entry completed: 

○ Landslide extents, area, and estimated volume are entered into the database. This 
would be completed utilizing the information available in the existing inventories 
and checked with basic DEM-based volume estimation techniques 
(e.g., Jaboyedoff et al., 2020). 

○ Source zone/parent material is confirmed in relation to position of landslide, 
available mapping, and expert judgement. To support this step, the highest point 
of any mapped landslide polygon would be reviewed in relation to both the 
estimated depth to the failure plane and the mapped geological unit to estimate 
which unit the landslide initiated in. 
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○ Observations of external modification due to natural toe erosion or human activity 
would be noted based on a visual review of landslide toe conditions and the 
temporal land use and land cover data sets. 

○ Each mapped landslide would be assigned a screening activity level based on the 
observations from the LCD and InSAR data using the criteria outlined in 
Section 5.4.1. 

○ Each existing landslide polygon would be assessed with the context of the 
displacement data obtained from the LCD and InSAR to assess whether any 
modifications to the polygon boundaries would be required (reduction or 
expansion) to ensure that a representative landslide volume is entered into the 
database. This delineation will be based on activity level and expert judgement 
using knowledge of the geological framework, surface morphology and spatial 
deformation trends. 

• Following the validation and update of the polygon data, initial visual observations and/or 
spatial analysis would be undertaken to delineate broad landslide classes based on 
geologic parent material, structural controls, and spatial densities of mapped landslides. 

• Within each broad landslide class, attributes such as external modification, surface 
roughness, and the initial activity screening may be utilized to subdivide the classes into 
clusters based on proximity and activity level. 

• As a next phase, each of the various broad activity categories outlined in Section 5.4.1 
would then be reviewed to assign specific velocity condition states across the timeframe 
for which displacement is available, such that velocity trend data is accessible in the 
database. 

• For the activity trends observed in the classification above, cluster-specific analysis would 
build on this displacement trend data and couple it with available hydroclimatic, 
precipitation, land cover and land use data (with the ability to review spatial and temporal 
changes for all data sets) in order to break out relationships observed. 

• Each polygon in clusters defined as being most sensitive to disturbance would then be 
assigned velocity condition states that would be used as the basis for analyses outlined in 
Section 5.6. 

Pending an understanding of data organization and completeness (Section 4.0), quantitative data 
driven approaches, such as applied for regional landslide correlations in Norway 
(Krogli et al., 2018) may be applicable for identifying statistically meaningful landslide attributes 
or correlations between intrinsic and extrinsic landslide factors and landslide activity. Additional 
evaluation would be afforded by nearly continuous time-series information on landslide velocity 
and extrinsic factors such as hydroclimatic conditions. 

The sensitivity of DSLs to surface modifications (e.g., changes to surface drainage, land cover, 
or vegetative removal) or hydroclimatic patterns (e.g., increased rainfall or snowmelt) can be 
estimated by observing high temporal resolution displacement data such as that from InSAR. 
These data are key to understanding the latency or memory of DSLs and to estimate how quickly 
or easily they may start to respond to surface changes. As discussed in Section 5.3.1 and Miller 
(2016, 2017), large and deep landslides in fine grained materials are likely the slowest to respond 
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to hydroclimatic trends or surface modifications. This follows from the fact that the shear surface 
in these landslides is physically more distant from the ground surface and fine-grained materials 
act as a buffer in transmitting hydrologic response from the ground surface. Conversely, DSLs 
initiated in coarse-grained or loosely consolidated materials and with a relatively shallow failure 
depth may experience the most rapid response to surface changes. The present study should 
assess the rate of velocity change (i.e., acceleration) in relation to these extrinsic perturbations.  

Forestry activities may influence the observed lag time between hydroclimatic changes and 
landslide activity. This could be due to the effects of forestry on local hydrology, such as reducing 
evapotranspiration, canopy interception capacity, or removing structural root masses. Landslide 
accelerations should be assessed in the context of historical forestry activity data 
(e.g., Section 3.1.3 or 5.4.2.6) and historical hydroclimatic trends. If velocity patterns of a landslide 
within or adjacent to forestry operations are consistent with velocity patterns of nearby landslides 
of a similar morphology (i.e., within the same landslide cluster), it could be possible that the 
forestry operations did not have much influence on the landslide activity. However, if the landslide 
within or adjacent to the forestry operations showed a greater acceleration compared to other 
landslides in the cluster, further interrogation should be performed. Examples of this further 
analysis could include using SAR-derived soil moisture trends (e.g., Bauer-Marschallinger et al., 
2018) to assess if the removal of vegetation coincided with a commensurate increase in soil 
moisture over a duration significant enough to potentially destabilize the landslide. If the cluster 
of the given landslide had previously been shown to have a lag time of months, then a very short 
duration increase in soil moisture (e.g., days) following forestry activities may not be significant 
enough to activate the landslide. Soil moisture is but one variable in the equation of landslide 
activity and, thus, findings from Section 5.4.3 should be included in this assessment. 

While the above sections describe how geospatial data and office-based assessment would be 
utilized to classify and organize landslides, the areas that are determined to be most sensitive to 
disturbance will likely benefit from field verification. It is expected that field verification would 
consider the hypotheses derived from the office-based assessments and review local conditions 
to assess validity of assumptions. 

5.5. Field Verification 

The field verification of the insights derived at the cluster-level from existing mapping and remotely 
sensed data will be important to provide confidence in the classification and support the 
development of field data collection procedures. As an example, as visual observations as to 
landslide velocity are extremely difficult to accurately quantify for velocity classes lower than Class 
3 (Table 5-2) the DNR may choose to identify clusters that have been historically active and/or 
demonstrated to be sensitive to disturbance, to review field-based activity indicators that had been 
collected previously, or select DSLs with no prior field observations for field verification, in order 
to assess how correlated these visual indicators were to the actual activity levels. Conversely, if 
there are areas for which decades of field observations indicate that a landslide is active, but the 
remote sensed data does not reflect this, the ability of these techniques to measure displacement 
in certain conditions would also require evaluation.  
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Once specific areas have been classified, it is expected that landslide clusters will be prioritized 
by UPSAG and will require some level of field validation by DNR to have confidence in the 
classification. In addition, the remote sensing analyses may identify areas with outliers that may 
require field data to clarify. During the study execution, each of the DSLs will be classified based 
on a collection of geological and morphological attributes and documented landslide activity 
(discussed in Section 5.2). To confirm that conditions on the ground agree with the office-based 
classification, the visual observations listed in Table 5-4 will be considered to support the 
classifications. Note this verification is not intended to verify individual features (e.g., ponded 
water or vegetation type), but instead to support the remote sensing-based DSL class 
assignment. 

Table 5-5. Sample visual observations to support validation of slope classification. 
Slope 

Dimensions 
Slope 

Morphology 
Lithology/ 

Stratigraphy Vegetation Water Human 
Modification 

Ground 
Movement 

Angle 
Total length 

Smooth 
Undulating 
Benched 
Ridged 

Geologic origin 
or parent 
material, degree 
of lithification 
(bedrock, glacial 
sediments) Fine 
grained (clay or 
silt) 
Coarse grained 

Cover type 
and density 
Observations 
of distressed 
and/or curved 
trees 

Ponded water 
on slope 
Quality of 
slope 
drainage. 
Disruption of 
natural 
drainages 

Observations 
of vegetation 
removal 
Any road 
construction 
Any material 
stockpiling 

Stepped/Benched 
Slopes 
Hummocky Ground 
Actively moving 
slopes in area 

As part of the ground-based validation of the landslide classification by DNR (or their consultants), 
a structured digital field data collection form and protocol would be developed and used to confirm 
that ground conditions are as expected and whether there are any site-specific conditions that 
require further consideration or modifications to the sensitivity analysis. 

5.6. Interim Methods to Estimate Future Behavior (Markov-Chain Analysis) 

A goal of the broader UPSAG DSL Strategy is to understand the potential sensitivity of DSLs to 
forestry related activities relative to other trigger mechanisms, and thus the probability that DSL 
activity and velocity will increase with surface disturbances. In the interim, however, data 
aggregation techniques discussed in this study may be useful for extracting information regarding 
future landslide behavior.  

Markov-Chain analysis can be used to combine landslide behavior type and current velocity to 
assign velocity class probability distributions for annual model timesteps. The model outputs can 
be used to support landslide hazard and risk assessments and lifecycle cost models. This method 
can be implemented where a velocity history of a given DSL is known or can be reasonably 
inferred (Section 5.2). Results of the analysis indicate the probability that a DSL class will 
transition to faster or slower velocity class over a given future time period, generally decadal in 
scale. The approach has been successfully applied to several engineering consulting 
assignments in central British Columbia and across the Western Canada Sedimentary Basin 
(e.g., Porter, 2021; Porter et al., 2022, van Veen et al., 2022). The suitability of implementing this 
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method regionally across western Washington will be understood following the data assimilation 
and velocity characterization tasks described above. 

It is expected that landslides that are observed to be moving slowly near the beginning of the 
study period of record will exhibit more frequent transitions to higher velocity classes over the 
period of record when compared to landslides that do not appear to be moving at the beginning 
of the period of record. In other words, it is more common for landslides that are already moving 
to accelerate compared to those that are dormant or relict. Furthermore, the expectation is that 
the observed frequency of velocity class transitions will be greater for faster moving landslides 
compared to slower moving landslides. If the study results validate these expectations, they will 
provide good justification for using landslide velocity as a key variable to predict the relative 
sensitivity of landslides to disturbance from timber harvesting using Markov Chains.  

Relying on expert interpretation from local landslide subject matter experts, Markov-Chain velocity 
class transition matrices represent the probability of transitioning from one landslide velocity class 
to another (or staying in the same velocity class). In the present study, these matrices could be 
developed for the representative landslide classes (Section 5.2.5). This could be done by first 
estimating the long-term average distribution of the velocity classes for each type of landslide as 
determined by InSAR and lidar change detection (i.e., the total number of “landslide years” spent 
in each velocity class over the period of record). This provides a representation of the target 
limiting state vector that should be generated by a reasonably well-calibrated Markov Chain 
transition matrix when the model is run for several hundred annual timesteps. Next, for each 
mapped landslide and each year of record, the number of observed transitions from and to each 
possible velocity class could be counted. These provide a first estimate of the transition 
probabilities that form the transition matrix for each type of landslide. Next, the models derived 
from the preliminary transition matrices could be run for several hundred timesteps and the model 
outputs compared with the target limiting state vectors. And finally, through experience, 
judgement, and trial and error, the transition probabilities in the preliminary transition matrices 
could be adjusted to improve the calibration of each model.  

If implemented here, DNR may gain access to a tool to generate meaningful probability estimates 
regarding the likely future condition state of DSLs while continuously working toward future goals 
for the research program (e.g., physically based or statistical slope stability models). 
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6.0 ADDITIONAL DATA CONSIDERATIONS 

This section provides a brief discussion of potential additional data considerations that may be 
explored during the execution phase of the study to support the various linked projects as part of 
the larger Strategy. An example of potential additional data includes landslide and slope stability 
inventories and studies by other agencies, for instance the compilations of the Washington 
Department of Transportation Unstable Slope Management Program (WSDOT USMP). BGC 
understands the WSDOT USMP has been active for many years, and although the data would be 
constrained to transportation corridors and is intentionally different, the information could provide 
patterns and indications of sensitivities to natural attributes and anthropogenic changes. The 
study should incorporate all relevant and applicable data sources available at the time of 
execution, including those not listed in the following sections.  

6.1. Targeted Site-Specific Data Collection 

While the remotely sensed data will provide a temporally and spatially continuous regional 
representation as to deformation trends, recent studies by Froese et al. (2022) highlight the 
importance of gathering site-specific displacement data to link external drivers with velocity state 
transitions. The daily to weekly observations provided by ground sensors, such as slope 
inclinometers or Global Positioning System (GPS) sensors, at instrumented landslides can 
provide critical understanding as to the sensitivity of local scale landslides to inputs such as 
increased moisture. To supplement the remotely sensed data, the team conducting the project 
execution is advised to assess whether site specific data exists or could be installed in the future 
that can better represent the transient conditions at more sensitive landslide clusters/locations 
and the following data sources could be considered: 

• Continuous displacement records – Froese et al. (2022) has demonstrated the utility of 
integrating near-continuous displacement data obtained from Slope Acceleration Arrays 
(SAA) with global hydroclimatic data coverages to assess the correlations with different 
rates/amounts of gross water infiltration with the onset of slope accelerations. These 
continuous data would be important to confirm hypotheses regarding the differing 
contributions of snow melt, precipitation, and longer-term soil moisture trends in relation 
to accelerations of different types of landslides in the study area. 

• Local climate stations – As discussed above with respect to displacement data, it would 
be of value in the project execution phase to select more highly sensitive landslide 
locations/clusters to provide actual ground measurements of near surface hydrology/soil 
moisture. This could be achieved with the installation of climate stations that collect data 
on precipitation, snow depth, temperature, and soil moisture to support calibration with 
regional data models. 

Both types of point source data would provide significant benefit to additional project phases, 
specifically Projects 4.8, 4.9 and 4.10 from the Strategy (Figure 1-1). Regional data and insights 
would be utilized to target locations for local data collection. These local data would then be 
utilized to increase site specific understanding of water infiltration and potential slope 
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destabilization. These local models can then further inform regional modeling efforts, forming a 
recurring cycle of regional to local understanding of DSL dynamics in western Washington. 

6.2. Future Data Availability and Project Integration 

The current study design considers technologies and data that are available at the time of the 
presentation of this report but there are significant advances in data availability that will likely 
evolve future application of the study guidance for other areas within Washington. One significant 
advancement will be the availability of freely available standard coverages of L-Band SAR data 
obtained from the NASA-Indian Space Research Organization (ISRO) NiSAR satellite. This 
satellite currently has a launch window that opens on January 29, 2024, and could have up to six 
months of data coverages available for processing in the fall of 2024. By having both ascending 
and descending standard coverages of L-Band data, more sensitive landslide clusters could likely 
be monitored and reassessed on a more regular manner to support more detailed 
characterization. 

In addition, the ability to continually integrate continuously collected displacement data into 
analytical models to refine the understanding as to the linkages between hydroclimate, land use, 
and displacement will allow the evolution of the models to enhance the ability to support seasonal 
decision making around activities in sensitive terrain. It is considered that these new data sets 
would provide specific value to Projects 4.7, 4.8, 4.9 and 4.10 (Figure 1-1).  
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7.0 TECHNICAL LIMITATIONS 

The critical research questions being addressed in this study (Section 1.4) are very challenging 
relative to the state of the science in 2023. Any study attempting to provide insight into these 
questions will include an inherent level of uncertainty. This is particularly true when attempting to 
address the questions for landslide populations that span large geographic areas.  

A large component of this uncertainty stems from the fact that the study has yet to be undertaken 
and there are a great many unknowns in what the study will uncover about the velocity 
characterizations of known deep-seated landslides. Rapid increases in landslide activity or 
velocity are relatively rare. That is, the activity of a given landslide typically remains constant 
through time, punctuated by small and relatively short duration changes to activity. This study 
attempts to identify these relatively rare transitions within the limited time frame of the available 
remote sensing data. The more of these transitions the study can identify, the more opportunity 
we will have to interrogate the relationship between the transition and external variables 
(e.g., hydroclimate, geology). If the available InSAR, lidar, and other datasets do not identify many 
transitions, our opportunities for further evaluation will be limited. The likelihood of success of this 
approach, therefore, is unknown at present, because the velocity characterization work has yet 
to be performed. BGC undertakes similar evaluations of regional landslide activity across Western 
Canada on an on-going basis utilizing a combination of LCD, InSAR, and field data to support 
regional understanding of landslide activity in relation to operational decision making. Based on 
the similarity of the ground conditions and relatively rich coverage of data, BGC considers that 
the approach outlined in this study design would provide significant value for the application 
proposed in western Washington. The architecture of this study aims to begin at the broadest 
grouping of the landslide population (e.g., >2500 landslides in proposed Study Area 1) and then 
to subdivide based on various attributes into landslide classes and ultimately clusters. The 
working thesis underpinning this approach is that the characterization work will provide sufficient 
detail around landslide activity patterns such that subdivisions can yield additional insight into the 
potential for increased landslide activity. For example, if a cluster of landslides is identified to 
respond similarly to changing hydroclimatic conditions, perhaps in the future, if a transition is 
identified at one of the landslides in the cluster, the remaining landslides in the cluster may be 
nearing a similar transition.  

Further uncertainty is due to the complex interplay between driving and resisting forces for a 
deep-seated landslide. Even intensive studies of single landslides are fraught with nuance to the 
landslide in question (e.g., Badger & D’Ignazio, 2018). Therefore, uncertainties around an 
evaluation of many thousands of deep-seated landslides must be considered carefully in the use 
and utility of the results. Primary sources of uncertainty in regard to driving and resisting forces 
include, but are not limited to, the following: 

• Site-specific hydrogeologic considerations including the presence, absence, or condition 
of geological units that may promote or impede groundwater flow 

• Unknowns regarding the site-specific history of a given landslide at geologic timescales 
• Spatial resolution of available data including geological maps and hydroclimatic data. 
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Executing this study will provide a more informed basis around uncertainty in the results and in 
how to best apply the results to assessing deep-seated landslide susceptibility in Washington. 
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8.0 PROJECT DELIVERABLES AND NEXT STEPS 

A complete list of project deliverables should be agreed upon between the qualified contractor 
selected to complete the study and DNR, but should at minimum, consist of: 

• A report describing the study execution and findings 
• Digital data transmittal including the project final database (Section 4.2) in a format 

preferred by DNR (e.g., ESRI Geodatabase). 

Findings of the Study should be integrated into the larger Strategy. The Study was designed with 
a forward-looking approach to assessing sensitivity of landslides (see item 4.7 in Figure 1-1). This 
is likely a GIS-based geospatial workflow that will need to be designed in a future effort and is not 
covered here. The objective of designing and populating the database for this Study, however, is 
to facilitate future statistical estimates on the sensitivity of landslides and to aid selection of DSLs 
for field-based testing of forest practice treatments and calibration of hydrologic models. 

Specifically, by undertaking the Study as outlined in this report, the qualified contractor should be 
able to provide guidance in relation to other portions of the overall program, including: 

• Project 4.7: GIS-Based Stability and Sensitivity Tool Kit – It is expected that the assembly 
of the structured landslide database and the satellite-derived hydroclimatic data to support 
the Study can be used as a foundation to build analytical tools to support modeling 
sensitivity of landslide classes or clusters. 

• Project 4.9: Physical Modeling Project – The classification of landslide classes and 
clusters in the study are expected to highlight differences in landslide performance that 
may help focus localized studies that integrate a deeper understanding of the subsurface 
conditions and external drivers to develop physical models that are able to replicate the 
observed performance. 

• Project 4.10: Monitoring Project – The application of the various remote sensing 
technologies to characterize landslide activity will provide important learnings to inform the 
design of future monitoring programs. This may include providing guidance on future lidar 
acquisitions, selection of targeted local monitoring programs, or development of plans for 
the integration of data from future SAR missions, such as NiSAR. 

• Projects 4.11: Modeled Evapotranspiration Refinement Project – The assembly of the 
satellite-derived hydroclimatic datasets can be utilized to support further 
evapotranspiration modeling to support landslide sensitivity assessments. 
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9.0 CONCLUSIONS 

The contribution of both intrinsic and extrinsic factors to deep-seated landslide mapping and 
classification is a complex subject. An understanding of landslide velocity transitions, the 
availability of emerging remotely sensed data sets and developments in data integration platforms 
and analytical techniques are allowing the geoscience and engineering communities to better 
understand trends in activity and sensitivity. This Study Design Report lays out a framework and 
specific design guidance for a regional proof-of-concept Pilot application that would provide 
statistical rigor around understanding regional drivers for velocity changes and which specific 
landslide classes and clusters are more sensitive to different external drivers. The focus of the 
study is to develop linkages that support the understanding of the landslide types and 
characteristics that are sensitive to forestry activities and related ground disturbance and could 
lead to velocity transitions for these types of landslides.  

Study areas proposed by DNR are relatively data-rich in relation to the availability of existing 
geological and landslide mapping and publicly available remotely sensed data (both airborne and 
satellite-based). An approach to mapping and classification has been proposed and specific 
sub-regions identified to maximize the likelihood of developing robust relationships. These 
locations have been chosen based on the quality of existing landslide inventory coverage, the 
density of mapped landslides, the amount of repeat lidar data sets available, and the spatial and 
temporal density of archived SAR data that could support generating InSAR deformation data. 
Based on these criteria, the following subregions have been identified as options for where to 
potentially execute the Mapping and Classification Pilot: 

• Area 1a and 1b: Western Whatcom County (Mount Baker to Lower Nooksack River) and 
the Upper Snohomish River System (Snoqualmie and Skykomish Rivers, including Upper 
Tolt and North Fork Snoqualmie) – 2,700 km2 

• Area 2 (includes 1b): Snohomish County (Sloan Peak to Snohomish) and the Snoqualmie 
River Valley (Fall City to Monroe, including Upper Tolt and North Fork 
Snoqualmie) – 3,600 km2. 

Each of the above study areas has been selected to provide a cross section of landslide classes 
and clusters that provide a statistically robust data set to assess the sensitivity of landslides to 
natural processes and human disturbance. For each of the potential targets, a strategized 
region-specific program of velocity data collection and processing would be undertaken, and 
these data would be integrated into a structured data schema for mapped landslides in the region. 
It is expected that the following velocity/displacement data would be integrated at each landslide 
polygon: 

• Confirmation of presence or absence of measurable displacements across collection 
period for data utilized 

• Annualized displacements to support screening different relative landslide activity zones 
• Discrete velocity trend data to understand potential correlation to seasonal or multi-year 

trends in hydroclimatic conditions, surface vegetation change and/or human modification 
of the ground surface. 
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The above observations would be entered into a database with an architecture designed to utilize 
these data sets into various modelling efforts for the DSL Mapping and Classification Project and 
other projects that contribute to the broader Strategy. To develop a data-driven understanding of 
linkages between the velocity trends and extrinsic factors (such as hydroclimatic influences and 
human disturbance), the design report has outlined key publicly available datasets that could be 
integrated with velocity data and provided a high-level example of how these data could be utilized 
in Washington State. 

Should the project be executed as outlined in this Study Design, it is expected that the products 
derived from the project would contribute to the overall study objectives as follows: 

1. To identify distinguishing characteristics within and between DSL classes in the study 
area: Section 5.2.5 provides a methodology that uses statistics derived from the existing 
landslide inventories to support designation of landslide classes and the use of different 
geological and morphological attributes and measured landslide activity to define landslide 
clusters. 

2. To determine why landslides with similar characteristics may exhibit differences in activity 
level: Section 5.4 provides suggestions on how to integrate and evaluate spatial and 
temporal data to link both physical and transient conditions to differences in landslide 
activity state. 

3. To develop causal mechanism hypotheses for individual landslides evaluated in the field. 
These mechanisms might include hydrogeologic characteristics visible in active 
landslides: In Section 5.4.1 there is an overview provided as to a stepwise process 
outlining how high-quality velocity and displacement observations will be linked to 
landslide inventory polygons and organized by landslide classes and clusters. The collated 
data will be integrated with hydroclimatic and land cover datasets to attempt to identify 
relationships between landslide attributes and these external drivers. Section 5.5 reviews 
where field verification can be utilized to support validation of causal mechanisms inferred 
from the remote sensed data assessment. 

4. To determine the best remote sensing tools, field assessment and other methods to 
classify DSLs in a manner that will aid our understanding of the greater or lesser potential 
for DSL reactivation or accelerated movement: Sections 3.0 and 5.0 provide an overview 
of the existing remotely sensed data and considerations for integration to best support the 
classification tasks. The application of the existing archived remote sensing data will 
support understanding as to which tools are most effective in deriving the critical variables 
and will support the optimization of data collection for future focus areas. 

5. To define classes of DSLs within and across clusters using a suite of physical attributes 
based on critical variables. These classes will also be used to support future phases of 
the research strategy (i.e., which DSLs are most representative or illustrative for future 
research and modeling efforts based on the results of the classification project): Sections 
5.0 and 6.0 provide significant detail around these variables and integration into future 
phases. 

6. To test an initial hypothesis that DSLs can be effectively ranked and classified based on 
multiple sources of empirical evidence, and that certain classes of landslides have a 
particularly high or low potential for instability from forest practices. This document outlines 
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an approach that would subdivide landslides based on attributes such as lithology, size, 
rupture depth, geomorphic position, and correlate these with velocity and extrinsic factors 
(hydroclimate, land use, land disturbance) to assess which landforms are most sensitive 
to human disturbance. 

When considering the overall research Strategy (UPSAG, 2020), the workplan outlined in this 
report is meant to provide a basis to directly inform and support the overall Strategy by providing 
a robust set of data and tools to understand historical trends to calibrate models that will support 
the understanding of the intrinsic and extrinsic contributions to landform sensitivity. Some of the 
other applications of the study inputs would be to:  

• Support planning data acquisition and mapping to support expanding these 
methodologies to other regions 

• Assessing how new technology advances and data availability, such as NASA’s upcoming 
NiSAR mission, can be integrated into future studies 

• Targeting specific landslide clusters or landslides where more detailed studies could be 
undertaken to understand the interaction between hydroclimate, hydrology and landslide 
activity. 
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10.0 CLOSURE 

We trust the above satisfies your requirements at this time. Should you have any questions or 
comments, please do not hesitate to contact us. 

Yours sincerely, 

BGC ENGINEERING INC. 
per: 

Corey Scheip, Ph.D., P.G. (N.C.) Corey Froese, M.Sc., P.Eng., P.Geo. 
Senior Geoscientist Principal Geological Engineer 

Reviewed by: 

Michael Porter, M.Eng., P.Eng., LEG (Washington) 
Principal Geological Engineer 

JMF/MJP/saa/th 
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A.1. INTRODUCTION 

As part of the assessment into the feasibility of utilizing satellite interferometric synthetic aperture 
(InSAR) to support mapping landslide velocities in western Washington, a review of the available 
SAR data archives over the study area provided by the Washington State Department of Natural 
Resources (DNR) has been completed. Figure A-1 provides an overview of the existing SAR 
satellites that have been collecting data since late 1991. These coverages include both C-Band 
and L-Band SAR data which have different strengths and weaknesses when considering 
integration into the project design. 

A sufficient number of SAR scenes over the imagery time period are required for time-series 
processing of ground displacements. Some coverages listed below lack sufficient temporal 
density in some areas to create a meaningful displacement time series. Please refer to the 
accompanying report for more information regarding the number of images required for a given 
duration and further considerations in leveraging InSAR processing for displacement estimates. 

 
Figure A-1. SAR coverages considered for study design. 

Whether any of these data can be utilized to undertake InSAR processing over the study area is 
dependent on both the spatial and temporal coverages of these data. The following provides an 
overview of the existing SAR data coverages available over Whatcom, Snohomish, King and 
Pierce Counties for the period between 1992 and present. 
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A.2. C-BAND COVERAGES 

A.2.1. ERS-1 and ERS-2 (1992 to 2008) 

 

 
Figure A-2. Descending ERS spatial (top) and temporal (bottom) coverage of the study area. 
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Figure A-3. Ascending ERS spatial (top) and temporal (bottom) coverage of the study area. 
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A.2.2 Radarsat-1 

 

 
Figure A-4. Descending Radarsat-1 spatial (top) and temporal (bottom) coverage over the study 

area. 
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Figure A-5. Ascending Radarsat-1 spatial (top) and temporal (bottom) coverages of the study area. 
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A.2.3 Radarsat-2 

 

 
Figure A-6. Descending Radarsat-1 spatial (top) and temporal (bottom) coverage of the study area. 
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Figure A-7. Ascending Radarsat-1 spatial (top) and temporal (bottom) coverage of the study area. 
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A.2.4. Sentinel-1 (2014 to Present) 

 

 
Figure A-8. Descending Sentinel-1 spatial (top) and temporal (bottom) coverages over the study 

area. 
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Figure A-9. Ascending Sentinel-1 spatial (top) and temporal (bottom) coverage over the study area. 
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A.3 L-BAND COVERAGES 

A.3.1. ALOS-1 (2006 to 2011) 

 

 
Figure A-10. Descending ALOS-1 spatial (top) and temporal (bottom) coverage over Whatcom 

County. 
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Figure A-11. Descending ALOS-1 spatial (top) and temporal (bottom) coverage over Whatcom 

County. 
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A.3.3.1 Snohomish to Pierce 

 

 
Figure A-12. Descending ALOS-1 spatial (top) and temporal (bottom) coverage over Snohomish, 

King and Pierce Counties. 
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Figure A-13. Ascending ALOS-1 spatial (top) and temporal (bottom) coverage over Snohomish, 

King and Pierce Counties. 
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A.3.2 ALOS-2 (2014 to Present) 

 

 
Figure A-14. Descending ALOS-2 spatial (top) and temporal (bottom) coverage over the study 

area. 
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Figure A-15. Ascending ALOS-2 spatial (top) and temporal (bottom) coverage over the study area. 
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