
RESERVOIR POTENTIAL MODELING
 The strain rate field surrounding faults can provide insights to where 

geothermal reservoirs are found.

 GPS-derived strain rate field used with a mechanical fault model to 
generate crustal fault slip and estimate the likelihood areservoir exists, 
and if so, estimate its vertical extent and volume.

 Poly3D (Thomas, 1993) will be used to model quasi-static fault slip and 
deformation in a homogeneous, isotropic linear elastic half-space. Fault 
geometry constrained with remotely sensed data, detailed geologic fault 
maps/cross sections, and seismicity (Swyer and Davatzes, 2013).

 Fracture density estimated based on maximum Coulomb shear stress. A 
critical density consistent with a percolating fracture network will be 
used to define viable reservoirs and the depth of fluid circulation as a 
source of heat to support a geothermal reservoir.

Poly3D (Thomas, 1993) uses 
the boundary element method 
to model quasi-static fault slip 
and deformation in the 
surrounding model volume in a 
homogeneous, isotropic linear 
elastic full or half-space. Faults 
are discretized into an array of 
triangular elements, which 
allows the construction of 
complex, realistic fault 
geometries (Swyer and 
Davatzes, 2013). Poly3D can 
be used to predict the location 
and orientation of secondary 
fractures around faults. Figure 
on right reproduced from 
Maerten and others (2002); far 
right figure obtained from 
Davatzes and others (2005).
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PERMEABILITY ANALYSIS PRODUCTS

 Maps of GPS-derived velocities and strain rates 
 Maps and cross sections of model-derived 

Coulomb stress that show regions favorable to 
fracture and fault slip that promote fluid flow 
 Assessment of the uncertainty in the model 

predictions 
 Assessment of reservoir potential 
 Maps and cross sections of fault slip tendency 

and displacement indicating the potential for 
the faults to act as fluid conduits, or in 
locations of inhibited/small slip, to act as fluid 
barriers 
 Integrating this assessment of reservoir 

potential with the heat model leads to the 
development of the geothermal resource 
potential model. 
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The geothermal resource potential model of Washington State was developed by 
Boschmann and others (2014) to represent the relative geothermal potential based on 
permeability and heat-potential modeling. Datasets were imported into a Geographic 
Information System (GIS), and multi-criteria analyses were run using the Analytic Hierarchy 
Process (AHP; Saaty, 2008) to determine the spatial association between various geologic 
and thermal features. The model is intended to highlight areas of elevated potential for the 

presence of moderate- to high-temperature geothermal systems without consideration of 
regulatory restrictions, land-management restrictions, or economic viability. The modeling 
identified several areas along the Cascade Range crest that warrant further attention: the 
Wind River valley, areas surrounding the Saint Helens seismic zone, and the southeast 
flank of Mount Baker.
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The regional strain rate 
field is derived from 
three-component daily 
positions of publicly 
available continuous 
GPS sites. Following 
Schmalzle and others 
(2014), GPS time series 
will be used to estimate 
horizontal and vertical 
velocities. Strain rates 
will be calculated using 
the spline-in-tension 
method of Wessel and 
Bercovici (1998). Strain 
rates calculated using 
this method will be 
used as boundary 
conditions for 
subsequent modeling.
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DESIRED OUTCOME
Detailed geothermal resource modeling using these techniques will 
be the first of its kind in Washington State and will lift the 
restrictions to exploration originating from limited or irregular data 
collection, high amounts of vegetative cover, precipitation, and 
snowpack. The modeling of reservoir potential provides a new 
approach to quantitative fairway analysis of fault-controlled 
reservoirs and risk assessment in regards to targeting discovery wells. 
This analysis provides a basis for defining the reservoir potential 
necessary to describe the recoverable geothermal resource.
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The Mount Baker area has received some attention due to the 
presence of thermal features and young volcanic centers, yet 
remains relatively unexplored. Exploration activities have included 
spring water sampling, geophysical surveys, soil mercury 
measurements, and one temperature-gradient borehole 
(Korosec,1984).
    Chemical geothermometry of Baker Hot Springs suggests that 
the reservoir equilibrium temperature of this system may range as 
high as 150 to 170°C (Korosec, 1984). DNR 83-3, a 140-m-deep 
temperature-gradient well was drilled near Baker Hot Springs and 
had a geothermal gradient between 200 and 309°C/km.         
    Although faults are not as well characterized as the other two  
plays, geologic maps and geomorphology indicate that the hot 
spring occurs along a major fault that defines the Baker Lake valley. 
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Mount St. Helens lies within Mount St. Helens National Volcanic Monument and is a designated Known 
Geothermal Resource Area (Burkhardt and others, 1980). The volcano is the site of ongoing geothermal 
activity, with numerous hot springs and fumaroles at the central crater, along the north flank, and in the 
Pumice Plain north of the 1980 flank collapse of the volcano. Geothermometer estimates of source 
temperatures range between 155°C and 185°C (Shevenell and Goff, 1995).
     The play lies at the northern end of the Saint Helens seismic zone (SHZ)(Weaver and others, 1987), 
a well-defined northwest-trending fault zone expressed as a linear band of concentrated seismicity that 
crosses the volcano and extends both north and south outside the Volcanic Monument. A DNR 
temperature-gradient borehole drilled near the Green River Soda Spring, where the SHZ crosses the 
Green River, detected a gradient of 50˚C/km. 
     Lands outside the volcanic monument are privately held by timber companies or managed by the 
Department of Natural Resources and the U.S. Forest Service (not shown), making these lands 
attractive exploration targets. Despite these factors, the area remains virtually unexplored.

0 1 2 miles

high

low

0.1 – 1

1.1 – 2

2.1 – 3

0.1 – 3
3.1 – 5
5.1 – 15
15.1 – 25

       magnitude
PNSN earthquakes

Magnetic survey
location

Resistivity 
survey line       depth (km)

Temperature-
gradient 
interpolation

Limit of new geologic
mapping

Spring

Volcanic vent

Temperature-gradient 
borehole
Water well

Stevenson      Ridge

Trout
Creek

Hill

Big
Butte

Bunker
Hill

Wind
Mtn

Pilot
Knob

Ridge

Mowich
Butte

Rock
Creek
Butte

Big
Huckleberry

Mtn

Gobblers
Knob

Buck 
Mtn

Warren

Little Wind River
Mineral Seep

Shipherd’s Hot Springs

Little
Soda

Spring

Tyee
Springs

Rock Creek
Hot Springs

St. Martins Hot Springs

Collins
Hot Springs

Gunderson Springs
Carson

Bonneville
Hot Springs

Government
Mineral
Springs WRV-1

55.9°C/km

DNR
85-7C

DNR-7
79.4°C/km

75.4°C/km

DNR-8
166°C/km

Stevenson

Columbia
R iver

W
ind

River

Littl
e  

Wind
  R

Be
ar

  C
r

Pan
the

r  Cr

Tro ut Cr

Rock  Cr

 

The Wind River valley, a northwest-trending valley draining southeastward into the Columbia River 
Gorge shows the highest modeled resource potential in the state. The valley lies along trend with 
newly discovered faults in Oregon that have recently been the object of preliminary geophysical 
exploration for geothermal resources (Cashman and others, 2013). 
    Several temperature-gradient boreholes drilled in the early 1980s revealed elevated gradients 
within this valley. In addition, numerous water wells at the southern end of the valley document warm 
water (Berri and Korosec, 1983). Based on the presence of thermal and mineral springs, relatively 
young intrusives, moderate seismicity, and warmer water found along the valley’s axis, some workers 
postulate that a valley-parallel structure channels high heat flow from cooling intrusives at depth 
within and along the length of this valley. Recent detailed mapping provides evidence for several 
newly mapped faults, which likely offset middle Pleistocene basalt flows. Their presence is further 
supported by deflections and anomalies in electrical resistivity and ground-based magnetic survey 
profiles across these zones. There are numerous thermal and mineral springs and seeps within this 
valley, found at the intersections of strands of the Shipherd and Wind River fault zones along and 
within the southern Wind River canyon (Czajkowski and others, 2014).
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Preliminary play-fairway model schematic for the 
three target areas, showing the procedure to 
model reservoir potential and integration with the 
model of available heat. 
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BACKGROUND
In the Pacific Northwest region of the U.S., geothermal resource of the Cascades 
is largely undeveloped—direct use of geothermal heat near Klamath Falls, 
Oregon, and the Neal Hot Springs power plant near Vale, Oregon being the 
exception. Part of the difficulty of finding and developing geothermal resources 
in the Cascades is related to the complex pattern of crustal deformation 
(McCaffrey and others, 2007) caused by the same plate convergence that 
produces the magmatic arc and heats the crust. Other challenges include dense 
vegetation, glacial veneers, and extreme precipitation that erode heat at very 
shallow depth and surficial alteration. 

PROJECT GOAL
The play type with the highest geothermal favorability in 
Washington State is found adjacent to active faults near the 
central axis of the magmatic arc. The play-fairway is 
provided by the natural permeability generated along faults 
and associated fractures. These structures can provide 
vertical pathways capable of tapping deep heat sources related 
to magmatism as well as large fracture networks to host the 
geothermal fluids in a viable reservoir. 

Three areas representative of this play type have high 
geothermal favorability on the statewide map and have active 

faults: the Wind River valley; the Saint Helens seismic zone 
north of the volcanic monument; and the southeast flank of 
Mount Baker. All three plays have geothermal lease holders 
with plans for exploration and are developable if sufficient 
resources are found. 

This project will:
1) refine the existing resource potential model in the target 

areas using new, innovative, and higher resolution data.
2) develop local, play-scale models that incorporate 

improved data with the mechanical constraints on 
reservoir potential.
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