The Doty Fault Network: 3D regional deformation applied to seismic hazard characterization in the forearc of Washington State
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Tectonic Setting New Observations from Potential Field Mapping Regional Relationships

The Doty fault is one of several east-trending compressional We are applying aeromagnetic and ground magnetic data, a regional gravity grid, high-resolution gravity lines, seismicity from a local broadband network, targeted geologic mapping, An e_vgntual goal _of the WC_SS is to understand the con- 1. E.NE trendipg Doty and South_erp Black Hills faults are parallel to th_e maximum com_pr_ess_.ive stress direction (c,) predicted by rotation (_)f the forearc. Our re-
British Columbia <]®sz:5:$::;:$ structures in the Puget Lowland (PL), seemingly at odds provenance characterization of Quaternary to Neogene sediments, dating, lidar interpretation and field reconnaissance of geomorphic features to our research questions. Here we nectivity of all active faults in the PL. Such full knowl- gional gravity map shows a similar result for the Seattle fault and Kingston arch. This indicates that eastern forearc structures are dominated by trench-paral-

<= to NAM, mmiyr with the northeasterly oriented compression along the Juan present initial results largely from the potential field work (see T131-0355 for methods and additional resuilts). edge will help us understand how quickly elastic strain lel tectonic driving forces.
builds on faults in different orientations and how they
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GOC-NAII! orearc ok Aveaker PL blockaccommodates might re_lease _such strain in the event of an earthquake 2. The NNW-trending Fall Cr_eek fault has_ major vertical offset, -therefor_e west of the Lincoln Cree_k uplift, trepch-perpendicular G, may dominate. This is further
pole | forearc block. A weaker PL block accommodates &R ' f 25 15 VRIAGE ' _— vidB 7 T T GRS i e — on a nelghborlng fault Of the subduction interface. The supported by sparse gravity data showing largely N-S trending gradients closer to the coast, likely reflecting broadly north-trending structures.
=P lower movig Canacian Coast Mouriains o S l AAEY A7 | BEQ . ‘:; Vo i NN 2 5~ = understudied Doty fault is farther west and south than _ | _ o . L . .
II e oL ke oo other well-studied faults in the greater Seattle urban 3. Gravity studies along the Mount Saint Helens seismic zone (MSHSZ) show active seismicity within a gravity low bounded by NNW-trending faults (Peacock
limits of the deforming PL block are not well-known area and will give us new understanding of strain at the and others, in prep). An outstanding question is how this activity might relate to the long-term earthquake potential of the MSHSZ or connected faults. The
. SN 57 N =ttt e AR | southem end of the PL block. We have the following ob-  Doty-Salzer Creek fault system may connect through a series of other faults east of our study area, as suggested by aeromagnetic lineaments in the region
e ]| Sy N 022 ) e NS 2ol // i SIS A e N G e servations thus far: (Blakely and others, 2016). Further study is needed to understand the connection.
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Continued drafting of new geologic maps.
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fault-related. Three unexpected features are apparent from the new data: 1) A north-trending gradient of extending to the surface (see below). Eastward, the gradient widens, sometimes with steps, indicating ’. due to stress changes on the subduction interface.
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4. HO_W does.; it link with strength of this gradient suggest that this is a fault, not a fold as suggested by the 100K mapping. We either multiple, widely-spaced faults and(or) fault complexities arising from interactions with the Scam- | T 2, ! X / '~ \Peacock and ¢ 1 LSRR . We have found no clear evidence that the Doty fault is currently active.
A Active fault map for western Washington state (Czajkowski and Bowman, 2014). neighboring faults to form a informally name this the Fall Creek fault. 2) A strong, linear gradient also bounds the southern edge of mon Creek fault. The Scammon Creek fault gradient has a bend, which may arise from a couple of en ) - JACAYZS L0 sostati pevw— 7)) G ) ;.&‘, | 4 & The lack of Quaternary surfaces crossing or near the fault makes the task

Green faults show signs of pre-Quaternary activity and purple/blue/orange/red network that accomodates 3D the Black Hills, which we informally name the Southern Black Hills fault. 3) A linear gravity low exists echelon strands, typical of oblique transfer structures. mGal
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faults show evidence of Pleistocene and later seismic activity. regi nal tectonic strain? south of the mapped axis of the Chehalis River syncline. This could be associated with a blind strand of ' B @ = 7 TR 7 g A . A o T _
m egio Sl T Byl Creals Bl ey R (&) 4 S i Vi SR LA does not preclude fault activity. Our continuing work may resolve this.

However, if the Doty fault is not active, then the southern boundary of the
deforming PL block would be farther north, indicating a shift over geologic
time and more concentrated seismic hazard in the central and northern
Washington forearc.
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3. Is the Doty fault active?
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