Deep-Seated Landslide Research Strategy

This project:

- Mapping and Classification
- Develop a database of deepseated landslides, and landslide classes, to aid development of next projects
- Classification will facilitate efficient use of resources for next projects

DSL Mapping and Classification: questions

Rule Group Critical Questions:

- 1. Can relative levels of response to forest practices be predicted by key characteristics of glacial deepseated landslides and/or their groundwater recharge areas?
- 2. Does harvesting of the recharge area of a glacial deep-seated landslide promote its instability?
- 3. Are unstable landforms being correctly and uniformly identified and evaluated for potential hazard?

Project Sub-Questions:

- 1. What are the distinguishing characteristics among DSLs within similar geomorphic, topographic, stratigraphic, hydrologic, and climatic settings?
- 2. Can activity levels of individual DSLs within and between clusters be linked to sensitivity to hydrologic change?
- 3. What are the critical independent variables necessary to define DSL classes?
- 4. What data are necessary to estimate the relative sensitivity of DSLs within a class?

DSL Mapping and Classification: scoping alternative

- Attribute and classify DSLs in recently completed Washington Geological Survey landslide inventories (Whatcom, Snohomish, King, and Pierce)
- Define landslide attributes that control occurrence and kinematics of failure

Slump-Earthflow

DSL Mapping and Classification:

study plan outline

Step 1: Develop initial GIS database and cluster selection

WGS inventory, lidar, mapped geology, CMER lands

Step 2: Refine remote cluster selection

 LDEM derivatives, geologic reports, historical imagery, activity levels

Clusters:

DSLs in similar geomorphic, topographic, hydrologic, and stratigraphic settings.

DSL Mapping and Classification: study plan

Step 3: Remote analysis and development of working hypotheses for processes and triggers

(groundwater flow, surface hydrology and GW recharge, landslide evolution, natural triggers, potential forest practices influences, kinematics)

Steps 4 and 5: Field Plan and Protocols

Step 6: Data Analysis, Products, Maps

Step 7: Synthesis and Report

DSL Mapping and Classification: challenges

Critical variables

what are they? how do we consistently measure remotely and via field sampling?

Clusters and classes

subjectivity - lumping vs splitting

Extrapolation and inference

• we won't be able to field verify all DSLs in a cluster, or all clusters, or all geographies

Methods for data analysis

Expectations for deliverables

• e.g., classification as final vs initial product of strategy

Group dynamics and communication

Inherent challenges with classification of highly complex and variable subsurface systems using mostly remotely sensed data

DSL Mapping and Classification: pivot example

UPSAG next steps....

- RFP for study plan development by contractor
- Two potential approaches:
 - Approved alternative and critical questions
 - Modify to provide more flexibility for contractor to develop alternative approach

