

We Badly Need a Regional Crab Working Group

Lots of Issues – Lots of Data Gaps

- Dramatic increase in socio-economic importance with salmon decline
- Increase in harvest
- Recruitment failures?
- Ecological importance of larval crab
- Unknown from anthropogenic risks
- Current management and enforcement capacity exceeded
- Collaborations and cooperation are required

Developing and Implementing a Plan

- Implementation of critical monitoring was initial motivation
 - Early life stage monitoring deemed critical by three diverse groups (crab-fishery, salmon-, and forage fish-centric)
 - Implementation by two monitoring and one research group preceded development of formal plan
- Using PCSGA Forum to formalize group in workshop setting this September
- Develop type of plan, defined by mission, goals, and objectives, via decision tree
- Shape of plan depends on initiators, motivation of participants, and those seeking long term solutions rather than short term profits; in our case, tribal resource management agencies made the first move!

Implementing Stage 1 Critical Monitoring

- MSP Bottom-up Salmon love crab larvae
- Lummi and Swinomish doing it
- First meeting was in March
- Primary goal was filling research gaps
- Three key focuses are represented:
 - Crab recruitment
 - Crab as salmon food
 - Opportunity to also monitor forage fish

Catches and Processing

- Traps good for larval crab and fish
- Low by-catch
- Processing is quick
- Used grid-based method for big catches
- CPUE for comparisons
- Index samples saved for validation
- Easy to keep alive for 24 hrs if kept cool

Trends in Cancridae Crab – MSP Zooplankton Monitoring Program 21 Stations in US Salish Sea – 2018 is 5th Year

Light Trap Catches

- •Tested 3 traps per site at 3 sites
- Among site variation greater than within site
- •Site with strongest tidal flux / exchange had highest catches (Hales Pass below)
- Site exposed to ocean transport had second highest (Sandy Point)
- •Site within a protected bay had lowest catches

Light Trap Catches

- •Timing of recruitment varies among sites (Lummi Sites Right)
- Major recruiting periods may reflect different population sources
- •Within a recruiting period, CPUE appears to peak with higher tides series

CPUE from
Lights Traps at
NOAA's
Mukilteo Site –
2016
(P. McElhany)

Correlations Between Offshore Net and Light Traps Catches Within the Same Region?

- Left Axis: Ln (Max Megalop Dens) from MSP stations closest to light trap sites at San Juan Islands (KWT) and Eliza Island near the sothern end of Lummi Island (Lummi)
- •Right Axis: Ln (Max Megalop CPUE) from two light trap sites; Hales Pass (HP LT) and Sandy Point SP LT)

